TY - JOUR
T1 - Chain conditions in special pullbacks
AU - Lim, Jung Wook
AU - Oh, Dong Yeol
PY - 2012/7
Y1 - 2012/7
N2 - Let D⊆E denote an extension of commutative rings with identity, I be a nonzero proper ideal of D, Γ mean a nonzero torsion-free additive grading monoid with Γ∩-Γ={0} and Γ *=Γ\{0}. Let E[Γ] be the semigroup ring of Γ over E, D+E[Γ *]={f∈E[Γ]|f(0)∈D} and D+I[Γ *]={f∈D[Γ]| the coefficients of nonconstant terms of f belong to I}. In this paper, we give some conditions for the rings (resp., domains) D+E[Γ *] and D+I[Γ *] to be Noetherian (resp., to satisfy the ascending chain condition on principal ideals).
AB - Let D⊆E denote an extension of commutative rings with identity, I be a nonzero proper ideal of D, Γ mean a nonzero torsion-free additive grading monoid with Γ∩-Γ={0} and Γ *=Γ\{0}. Let E[Γ] be the semigroup ring of Γ over E, D+E[Γ *]={f∈E[Γ]|f(0)∈D} and D+I[Γ *]={f∈D[Γ]| the coefficients of nonconstant terms of f belong to I}. In this paper, we give some conditions for the rings (resp., domains) D+E[Γ *] and D+I[Γ *] to be Noetherian (resp., to satisfy the ascending chain condition on principal ideals).
UR - http://www.scopus.com/inward/record.url?scp=84866763634&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2012.07.003
DO - 10.1016/j.crma.2012.07.003
M3 - Article
AN - SCOPUS:84866763634
SN - 1631-073X
VL - 350
SP - 655
EP - 659
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 13-14
ER -