Classification of rotator cuff tears in ultrasound images using deep learning models

Thao Thi Ho, Geun Tae Kim, Taewoo Kim, Sanghun Choi, Eun Kee Park

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Rotator cuff tears (RCTs) are one of the most common shoulder injuries, which are typically diagnosed using relatively expensive and time-consuming diagnostic imaging tests such as magnetic resonance imaging or computed tomography. Deep learning algorithms are increasingly used to analyze medical images, but they have not been used to identify RCTs with ultrasound images. The aim of this study is to develop an approach to automatically classify RCTs and provide visualization of tear location using ultrasound images and convolutional neural networks (CNNs). The proposed method was developed using transfer learning and fine-tuning with five pre-trained deep models (VGG19, InceptionV3, Xception, ResNet50, and DenseNet121). The Bayesian optimization method was also used to optimize hyperparameters of the CNN models. A total of 194 ultrasound images from Kosin University Gospel Hospital were used to train and test the CNN models by five-fold cross-validation. Among the five models, DenseNet121 demonstrated the best classification performance with 88.2% accuracy, 93.8% sensitivity, 83.6% specificity, and AUC score of 0.832. A gradient-weighted class activation mapping (Grad-CAM) highlighted the sensitive features in the learning process on ultrasound images. The proposed approach demonstrates the feasibility of using deep learning and ultrasound images to assist RCTs’ diagnosis. Graphical abstract: [Figure not available: see fulltext.]

Original languageEnglish
Pages (from-to)1269-1278
Number of pages10
JournalMedical and Biological Engineering and Computing
Volume60
Issue number5
DOIs
StatePublished - May 2022

Keywords

  • Convolutional neural network
  • Deep learning
  • Rotator cuff tears
  • Transfer learning
  • Ultrasound

Fingerprint

Dive into the research topics of 'Classification of rotator cuff tears in ultrasound images using deep learning models'. Together they form a unique fingerprint.

Cite this