Abstract
Purpose: To validate the use of synthetic magnetic resonance imaging (SyMRI) volumetry by comparing with child-optimized SPM 12 volumetry in 3 T pediatric neuroimaging. Methods: In total, 106 children aged 4.7–18.7 years who underwent both synthetic and 3D T1-weighted imaging and had no abnormal imaging/neurologic findings were included for the SyMRI vs. SPM T1-only segmentation (SPM T1). Forty of the 106 children who underwent an additional 3D T2-weighted imaging were included for the SyMRI vs. SPM multispectral segmentation (SPM multi). SPM segmentation using an age-appropriate atlas and inverse-transforming template-space intracranial mask was compared with SyMRI segmentation. Volume differences between SyMRI and SPM T1 were plotted against age to evaluate the influence of age on volume difference. Results: Measurements derived from SyMRI and two SPM methods showed excellent agreements and strong correlations except for the CSF volume (CSFV) (intraclass correlation coefficients = 0.87–0.98; r = 0.78–0.96; relative volume difference other than CSFV = 6.8–18.5% [SyMRI vs. SPM T1] and 11.3–22.7% [SyMRI vs. SPM multi]). Dice coefficients of all brain tissues (except CSF) were in the range 0.78–0.91. The Bland–Altman plot and age-related volume difference change suggested that the volume differences between the two methods were influenced by the volume of each brain tissue and subject’s age (p < 0.05). Conclusion: SyMRI and SPM segmentation results were consistent except for CSFV, which supports routine clinical use of SyMRI-based volumetry in pediatric neuroimaging. However, caution should be taken in the interpretation of the CSF segmentation results.
Original language | English |
---|---|
Pages (from-to) | 381-392 |
Number of pages | 12 |
Journal | Neuroradiology |
Volume | 64 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2022 |
Keywords
- Brain segmentation
- Children
- Multispectral segmentation
- SPM
- Synthetic MRI