Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species

Sajjad Asaf, Abdul Latif Khan, Muhammad Aaqil Khan, Qari Muhammad Imran, Sang Mo Kang, Khdija Al-Hosni, Eun Ju Jeong, Ko Eun Lee, In Jung Lee

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

The plastid genomes of different plant species exhibit significant variation, thereby providing valuable markers for exploring evolutionary relationships and population genetics. Glycine soja (wild soybean) is recognized as the wild ancestor of cultivated soybean (G. max), representing a valuable genetic resource for soybean breeding programmes. In the present study, the complete plastid genome of G. soja was sequenced using Illumina paired-end sequencing and then compared it for the first time with previously reported plastid genome sequences from nine other Glycine species. The G. soja plastid genome was 152,224 bp in length and possessed a typical quadripartite structure, consisting of a pair of inverted repeats (IRa/IRb; 25,574 bp) separated by small (178,963 bp) and large (83,181 bp) single-copy regions, with a 51-kb inversion in the large single-copy region. The genome encoded 134 genes, including 87 protein-coding genes, eight ribosomal RNA genes, and 39 transfer RNA genes, and possessed 204 randomly distributed microsatellites, including 15 forward, 25 tandem, and 34 palindromic repeats. Whole-plastid genome comparisons revealed an overall high degree of sequence similarity between G. max and G. gracilis and some divergence in the intergenic spacers of other species. Greater numbers of indels and SNP substitutions were observed compared with G. cyrtoloba. The sequence of the accD gene from G. soja was highly divergent from those of the other species except for G. max and G. gracilis. Phylogenomic analyses of the complete plastid genomes and 76 shared genes yielded an identical topology and indicated that G. soja is closely related to G. max and G. gracilis. The complete G. soja genome sequenced in the present study is a valuable resource for investigating the population and evolutionary genetics of Glycine species and can be used to identify related species.

Original languageEnglish
Article numbere0182281
JournalPLoS ONE
Volume12
Issue number8
DOIs
StatePublished - Aug 2017

Fingerprint

Dive into the research topics of 'Comparative analysis of complete plastid genomes from wild soybean (Glycine soja) and nine other Glycine species'. Together they form a unique fingerprint.

Cite this