TY - JOUR
T1 - Comparative Plastid Genome and Phylogenomic Analyses of Potamogeton Species
AU - Choi, Kyoung Su
AU - Hwang, Yong
AU - Hong, Jeong Ki
AU - Kang, Jong Soo
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/10
Y1 - 2023/10
N2 - Potamogetonaceae are aquatic plants divided into six genera. The largest genus in the family is Potamogeton, which is morphologically diverse with many hybrids and polyploids. Potamogetonaceae plastomes were conserved in genome size (155,863 bp–156,669 bp), gene contents (113 genes in total, comprising 79 protein-coding genes and 30 tRNA and 4 rRNA genes), and GC content (36.5%). However, we detected a duplication of the trnH gene in the IR region of the Potamogeton crispus and P. maakianus plastomes. A comparative analysis of Alismatales indicated that the plastomes of Potamogetonaceae, Cymodaceae, and Ruppiaceae have experienced a 6-kb inversion of the rbcL-trnV region and the ndh complex has been lost in the Najas flexilis plastome. Five divergent hotspots (rps16-trnQ, atpF intron, rpoB-trnC, trnC-psbM, and ndhF-rpl32) were identified among the Potamogeton plastomes, which will be useful for species identification. Phylogenetic analyses showed that the family Potamogetonaceae is a well-defined with 100% bootstrap support and divided into two different clades, Potamogeton and Stuckenia. Compared to the nucleotide substitution rates among Alismatales, we found neutral selection in all plastid genes of Potamogeton species. Our results reveal the complete plastome sequences of Potamogeton species, and will be helpful for taxonomic identification, the elucidation of phylogenetic relationships, and the plastome structural analysis of aquatic plants.
AB - Potamogetonaceae are aquatic plants divided into six genera. The largest genus in the family is Potamogeton, which is morphologically diverse with many hybrids and polyploids. Potamogetonaceae plastomes were conserved in genome size (155,863 bp–156,669 bp), gene contents (113 genes in total, comprising 79 protein-coding genes and 30 tRNA and 4 rRNA genes), and GC content (36.5%). However, we detected a duplication of the trnH gene in the IR region of the Potamogeton crispus and P. maakianus plastomes. A comparative analysis of Alismatales indicated that the plastomes of Potamogetonaceae, Cymodaceae, and Ruppiaceae have experienced a 6-kb inversion of the rbcL-trnV region and the ndh complex has been lost in the Najas flexilis plastome. Five divergent hotspots (rps16-trnQ, atpF intron, rpoB-trnC, trnC-psbM, and ndhF-rpl32) were identified among the Potamogeton plastomes, which will be useful for species identification. Phylogenetic analyses showed that the family Potamogetonaceae is a well-defined with 100% bootstrap support and divided into two different clades, Potamogeton and Stuckenia. Compared to the nucleotide substitution rates among Alismatales, we found neutral selection in all plastid genes of Potamogeton species. Our results reveal the complete plastome sequences of Potamogeton species, and will be helpful for taxonomic identification, the elucidation of phylogenetic relationships, and the plastome structural analysis of aquatic plants.
KW - Alismatales
KW - phylogenomic analysis
KW - plastid genome
KW - Potamogeton
KW - Potamogetonaceae
UR - http://www.scopus.com/inward/record.url?scp=85175277787&partnerID=8YFLogxK
U2 - 10.3390/genes14101914
DO - 10.3390/genes14101914
M3 - Article
C2 - 37895263
AN - SCOPUS:85175277787
SN - 2073-4425
VL - 14
JO - Genes
JF - Genes
IS - 10
M1 - 1914
ER -