TY - JOUR
T1 - Comparing properties of concrete containing electric arc furnace slag and granulated blast furnace slag
AU - Lee, Jin Young
AU - Choi, Jin Seok
AU - Yuan, Tian Feng
AU - Yoon, Young Soo
AU - Mitchell, Denis
N1 - Publisher Copyright:
© 2019 by the authors.
PY - 2019
Y1 - 2019
N2 - For sustainable development in the construction industry, blast furnace slag has been used as a substitute for cement in concrete. In contrast, steel-making slag, the second largest by-product in the steel industry, is mostly used as a filler material in embankment construction. This is because steel-making slag has relatively low hydraulicity and a problem with volumetric expansion. However, as the quenching process of slag has improved recently and the steel making process is specifically separated, the properties of steel-making slag has also improved. In this context, there is a need to find a method for recycling steel-making slag as a more highly valued material, such as its potential use as an admixture in concrete. Therefore, in order to confirm the possibility of using electric arc furnace (EAF) oxidizing slag as a binder, a comparative assessment of the mechanical properties of concrete containing electric arc furnace oxidizing slag, steel-making slag, and granulated blast furnace (GBF) slag was performed. The initial and final setting, shrinkage, compressive and split-cylinder tensile strength of the slag concretes were measured. It was found that replacing cement with EAF oxidizing slag delayed the hydration reaction at early ages, with no significant problems in setting time, shrinkage or strength development found.
AB - For sustainable development in the construction industry, blast furnace slag has been used as a substitute for cement in concrete. In contrast, steel-making slag, the second largest by-product in the steel industry, is mostly used as a filler material in embankment construction. This is because steel-making slag has relatively low hydraulicity and a problem with volumetric expansion. However, as the quenching process of slag has improved recently and the steel making process is specifically separated, the properties of steel-making slag has also improved. In this context, there is a need to find a method for recycling steel-making slag as a more highly valued material, such as its potential use as an admixture in concrete. Therefore, in order to confirm the possibility of using electric arc furnace (EAF) oxidizing slag as a binder, a comparative assessment of the mechanical properties of concrete containing electric arc furnace oxidizing slag, steel-making slag, and granulated blast furnace (GBF) slag was performed. The initial and final setting, shrinkage, compressive and split-cylinder tensile strength of the slag concretes were measured. It was found that replacing cement with EAF oxidizing slag delayed the hydration reaction at early ages, with no significant problems in setting time, shrinkage or strength development found.
KW - Blast furnace slag
KW - Compressive strength
KW - Electric arc furnace slag
KW - Initial and final setting
KW - Shrinkage
UR - http://www.scopus.com/inward/record.url?scp=85065714215&partnerID=8YFLogxK
U2 - 10.3390/ma12091371
DO - 10.3390/ma12091371
M3 - Article
AN - SCOPUS:85065714215
SN - 1996-1944
VL - 12
JO - Materials
JF - Materials
IS - 9
M1 - 1371
ER -