TY - JOUR
T1 - Comparison between a reanalyzed product by 3-dimensional variational assimilation technique and observations in the Ulleung Basin of the East/Japan Sea
AU - Kim, Young Ho
AU - Chang, Kyung Il
AU - Park, Jong Jin
AU - Park, Seon Ki
AU - Lee, Sang Hyun
AU - Kim, Young Gyu
AU - Jung, Kyung Tae
AU - Kim, Kuh
PY - 2009/9
Y1 - 2009/9
N2 - Reanalyzed products from a MOM3-based East Sea Regional Ocean Model with a 3-dimentional variational data assimilation module (DA-ESROM), have been compared with the observed hydrographic and current datasets in the Ulleung Basin (UB) of the East/Japan Sea (EJS). Satellite-borne sea surface temperature and sea surface height data, and in-situ temperature profiles have been assimilated into the DA-ESROM. The performance of the DA-ESROM appears to be efficient enough to be used in an operational ocean forecast system. Comparing with the results from Mitchell et al. [Mitchell, D. A., Watts, D. R., Wimbush, M., Teague, W.J., Tracey, K. L., Book, J. W., Chang, K.-I., Suk, M.-S., Yoon, J.-H., 2005a. Upper circulation patterns in the Ulleung Basin. Deep-Sea Res. II, 52, 1617-1638.], the DA-ESROM fairly well simulates the high variability of the Ulleung Warm Eddy and Dok Cold Eddy as well as the branching of the Tsushima Warm Current in the UB. The overall root-mean-square error between 100 m temperature field reproduced by the DA-ESROM and the observed 100-dbar temperature field is 2.1 °C, and the spatially averaged grid-to-grid correlation between the two temperature fields is high with a mean value of 0.79 for the inter-comparison period. The DA-ESROM reproduces the development of strong southward North Korean Cold Current (NKCC) in summer consistent with the observational results, which is thought to be an improvement of the previous numerical models in the EJS. The reanalyzed products show that the NKCC is about 35 km wide, and flows southward along the Korean coast from spring to summer with maximum monthly mean volume transport of about 0.8 Sv in August-September.
AB - Reanalyzed products from a MOM3-based East Sea Regional Ocean Model with a 3-dimentional variational data assimilation module (DA-ESROM), have been compared with the observed hydrographic and current datasets in the Ulleung Basin (UB) of the East/Japan Sea (EJS). Satellite-borne sea surface temperature and sea surface height data, and in-situ temperature profiles have been assimilated into the DA-ESROM. The performance of the DA-ESROM appears to be efficient enough to be used in an operational ocean forecast system. Comparing with the results from Mitchell et al. [Mitchell, D. A., Watts, D. R., Wimbush, M., Teague, W.J., Tracey, K. L., Book, J. W., Chang, K.-I., Suk, M.-S., Yoon, J.-H., 2005a. Upper circulation patterns in the Ulleung Basin. Deep-Sea Res. II, 52, 1617-1638.], the DA-ESROM fairly well simulates the high variability of the Ulleung Warm Eddy and Dok Cold Eddy as well as the branching of the Tsushima Warm Current in the UB. The overall root-mean-square error between 100 m temperature field reproduced by the DA-ESROM and the observed 100-dbar temperature field is 2.1 °C, and the spatially averaged grid-to-grid correlation between the two temperature fields is high with a mean value of 0.79 for the inter-comparison period. The DA-ESROM reproduces the development of strong southward North Korean Cold Current (NKCC) in summer consistent with the observational results, which is thought to be an improvement of the previous numerical models in the EJS. The reanalyzed products show that the NKCC is about 35 km wide, and flows southward along the Korean coast from spring to summer with maximum monthly mean volume transport of about 0.8 Sv in August-September.
KW - 3-dimensional variational technique
KW - East Sea Regional Ocean Model
KW - East/Japan Sea
KW - Modeling
KW - North Korean Cold Current
KW - Oceanic currents
KW - Oceanic eddies
KW - Ulleung Basin
UR - http://www.scopus.com/inward/record.url?scp=68749103777&partnerID=8YFLogxK
U2 - 10.1016/j.jmarsys.2009.02.017
DO - 10.1016/j.jmarsys.2009.02.017
M3 - Article
AN - SCOPUS:68749103777
SN - 0924-7963
VL - 78
SP - 249
EP - 264
JO - Journal of Marine Systems
JF - Journal of Marine Systems
IS - 2
ER -