TY - JOUR
T1 - Comparison of the effects of matrix metalloproteinase inhibitors on TNF-α release from activated microglia and TNF-α converting enzyme activity
AU - Lee, Eun Jung
AU - Moon, Pyong Gon
AU - Baek, Moon Chang
AU - Kim, Hee Sun
N1 - Publisher Copyright:
© 2014 The Korean Society of Applied Pharmacology.
PY - 2014/9/1
Y1 - 2014/9/1
N2 - Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate cell-matrix composition and are also involved in processing various bioactive molecules such as cell-surface receptors, chemokines, and cytokines. Our group recently reported that MMP-3, -8, and -9 are upregulated during microglial activation and play a role as proinflammatory mediators (Lee et al., 2010, 2014). In particular, we demonstrated that MMP-8 has tumor necrosis factor alpha (TNF-α)-converting enzyme (TACE) activity by cleaving the prodomain of TNF-α and that inhibition of MMP-8 inhibits TACE activity. The present study was undertaken to compare the effect of MMP-8 inhibitor (M8I) with those of inhibitors of other MMPs, such as MMP-3 (NNGH) or MMP-9 (M9I), in their regulation of TNF-α activity. We found that the MMP inhibitors suppressed TNF-α secretion from lipopolysaccharide (LPS)- stimulated BV2 microglial cells in an order of efficacy: M8I>NNGH>M9I. In addition, MMP inhibitors suppressed the activity of recombinant TACE protein in the same efficacy order as that of TNF-α inhibition (M8I>NNGH>M9I), proving a direct correlation between TACE activity and TNF-α secretion. A subsequent pro-TNF-α cleavage assay revealed that both MMP-3 and MMP-9 cleave a prodomain of TNF-α, suggesting that MMP-3 and MMP-9 also have TACE activity. However, the number and position of cleavage sites varied between MMP-3, -8, and -9. Collectively, the concurrent inhibition of MMP and TACE by NNGH, M8I, or M9I may contribute to their strong anti-inflammatory and neuroprotective effects.
AB - Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate cell-matrix composition and are also involved in processing various bioactive molecules such as cell-surface receptors, chemokines, and cytokines. Our group recently reported that MMP-3, -8, and -9 are upregulated during microglial activation and play a role as proinflammatory mediators (Lee et al., 2010, 2014). In particular, we demonstrated that MMP-8 has tumor necrosis factor alpha (TNF-α)-converting enzyme (TACE) activity by cleaving the prodomain of TNF-α and that inhibition of MMP-8 inhibits TACE activity. The present study was undertaken to compare the effect of MMP-8 inhibitor (M8I) with those of inhibitors of other MMPs, such as MMP-3 (NNGH) or MMP-9 (M9I), in their regulation of TNF-α activity. We found that the MMP inhibitors suppressed TNF-α secretion from lipopolysaccharide (LPS)- stimulated BV2 microglial cells in an order of efficacy: M8I>NNGH>M9I. In addition, MMP inhibitors suppressed the activity of recombinant TACE protein in the same efficacy order as that of TNF-α inhibition (M8I>NNGH>M9I), proving a direct correlation between TACE activity and TNF-α secretion. A subsequent pro-TNF-α cleavage assay revealed that both MMP-3 and MMP-9 cleave a prodomain of TNF-α, suggesting that MMP-3 and MMP-9 also have TACE activity. However, the number and position of cleavage sites varied between MMP-3, -8, and -9. Collectively, the concurrent inhibition of MMP and TACE by NNGH, M8I, or M9I may contribute to their strong anti-inflammatory and neuroprotective effects.
KW - Inflammation
KW - MMP inhibitor
KW - Microglia
KW - TACE
KW - TNF-α
UR - http://www.scopus.com/inward/record.url?scp=84908018333&partnerID=8YFLogxK
U2 - 10.4062/biomolther.2014.099
DO - 10.4062/biomolther.2014.099
M3 - Article
AN - SCOPUS:84908018333
SN - 1976-9148
VL - 22
SP - 414
EP - 419
JO - Biomolecules and Therapeutics
JF - Biomolecules and Therapeutics
IS - 5
ER -