TY - GEN
T1 - Comparison of transient and steady-state behaviors in unwinding mechanism
AU - Yoo, Wan Suk
AU - Kim, Kun Woo
AU - An, Deuk Man
AU - Lee, Jae Wook
PY - 2011
Y1 - 2011
N2 - In this study, the transient analysis of a cable unwinding from a cylindrical spool package is first studied and compared to experiment. Then, a steady-state solution is also compared to transient solution. Cables are assumed to be withdrawn with a constant velocity through a fixed point which is located along the axis of the package. When the cable is flown out of the package, several dynamic forces, such as inertial force, Coriolis force, centrifugal force, tensile force, and fluidresistance force are acting on the cable. Consequently, the cable becomes to undergo very nonlinear and complex unwinding behavior which is called unwinding balloon. In this paper, to prevent the problems during unwinding such as tangling or cutting, unwinding behaviors of cables in transient state were derived and analyzed. First of all, the governing equations of motion of cables unwinding from a cylindrical spool package were systematically derived using the extended Hamilton's principles of an open system in which mass is transported at each boundary. And the modified finite difference methods are suggested to solve the derived nonlinear partial differential equations. Time responses of unwinding cables are calculated using Newmark time integration methods. The transient solution is compared to physical experiment, and then the steady-state solution is compared to transient solution.
AB - In this study, the transient analysis of a cable unwinding from a cylindrical spool package is first studied and compared to experiment. Then, a steady-state solution is also compared to transient solution. Cables are assumed to be withdrawn with a constant velocity through a fixed point which is located along the axis of the package. When the cable is flown out of the package, several dynamic forces, such as inertial force, Coriolis force, centrifugal force, tensile force, and fluidresistance force are acting on the cable. Consequently, the cable becomes to undergo very nonlinear and complex unwinding behavior which is called unwinding balloon. In this paper, to prevent the problems during unwinding such as tangling or cutting, unwinding behaviors of cables in transient state were derived and analyzed. First of all, the governing equations of motion of cables unwinding from a cylindrical spool package were systematically derived using the extended Hamilton's principles of an open system in which mass is transported at each boundary. And the modified finite difference methods are suggested to solve the derived nonlinear partial differential equations. Time responses of unwinding cables are calculated using Newmark time integration methods. The transient solution is compared to physical experiment, and then the steady-state solution is compared to transient solution.
UR - http://www.scopus.com/inward/record.url?scp=84863579847&partnerID=8YFLogxK
U2 - 10.1115/DETC2011-47246
DO - 10.1115/DETC2011-47246
M3 - Conference contribution
AN - SCOPUS:84863579847
SN - 9780791854815
T3 - Proceedings of the ASME Design Engineering Technical Conference
SP - 883
EP - 888
BT - ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
T2 - ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2011
Y2 - 28 August 2011 through 31 August 2011
ER -