Competition-Aware Decision-Making Approach for Mobile Robots in Racing Scenarios

Kyoungtae Ji, Sangjae Bae, Nan Li, Kyoungseok Han

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper presents a game-theoretic strategy for racing, where the autonomous ego agent seeks to block a racing opponent that aims to overtake the ego agent. After a library of trajectory candidates and an associated reward matrix are constructed, the optimal trajectory in terms of maximizing the cumulative reward over the planning horizon is determined based on the level-K reasoning framework. In particular, the level of the opponent is estimated online according to its behavior over a past window and is then used to determine the trajectory for the ego agent. Taking into account that the opponent may change its level and strategy during the decision process of the ego agent, we introduce a trajectory mixing strategy that blends the level-K optimal trajectory with a fail-safe trajectory. The overall algorithm was tested and evaluated in various simulated racing scenarios, which also includes human-in-the-loop experiments. Comparative analysis against the conventional level-K framework demonstrates the superiority of our proposed approach in terms of overtake-blocking success rates.

Original languageEnglish
Title of host publication35th IEEE Intelligent Vehicles Symposium, IV 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages878-884
Number of pages7
ISBN (Electronic)9798350348811
DOIs
StatePublished - 2024
Event35th IEEE Intelligent Vehicles Symposium, IV 2024 - Jeju Island, Korea, Republic of
Duration: 2 Jun 20245 Jun 2024

Publication series

NameIEEE Intelligent Vehicles Symposium, Proceedings
ISSN (Print)1931-0587
ISSN (Electronic)2642-7214

Conference

Conference35th IEEE Intelligent Vehicles Symposium, IV 2024
Country/TerritoryKorea, Republic of
CityJeju Island
Period2/06/245/06/24

Fingerprint

Dive into the research topics of 'Competition-Aware Decision-Making Approach for Mobile Robots in Racing Scenarios'. Together they form a unique fingerprint.

Cite this