Abstract
Changes in the brain with age can provide useful information regarding an individual’s chronological age. studies have suggested that functional connectomes identified via resting-state functional magnetic resonance imaging (fMRI) could be a powerful feature for predicting an individual’s age. We applied connectome-based predictive modeling (CPM) to investigate individual chronological age predictions via resting-state fMRI using open-source datasets. The significant feature for age prediction was confirmed in 168 subjects from the Southwest University Adult Lifespan Dataset. The higher contributing nodes for age production included a positive connection from the left inferior parietal sulcus and a negative connection from the right middle temporal sulcus. On the network scale, the subcortical–cerebellum network was the dominant network for age prediction. The generalizability of CPM, which was constructed using the identified features, was verified by applying this model to independent datasets that were randomly selected from the Autism Brain Imaging Data Exchange I and the Open Access Series of Imaging Studies 3. CPM via resting-state fMRI is a potential robust predictor for determining an individual’s chronological age from changes in the brain.
Original language | English |
---|---|
Journal | Experimental Brain Research |
DOIs | |
State | Accepted/In press - 2022 |
Keywords
- Connectome-based predictive modeling
- Feature selection
- Functional connectivity
- Prediction model
- Resting-state functional magnetic resonance imaging