TY - JOUR
T1 - Consideration of the door opening process in pedestrian flow
T2 - Experiments on door opening direction, door handle type, and limited visibility
AU - Son, Jong Yeong
AU - Bae, Young Hoon
AU - Kim, Young Chan
AU - Oh, Ryun Seok
AU - Hong, Won Hwa
AU - Choi, Jun Ho
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/10/2
Y1 - 2020/10/2
N2 - The door is a section prone to bottlenecks and is an important element in the study of pedestrian flow. Therefore, characteristics of doors (e.g., width, location, and the distance between doors) have been taken into consideration in the existing literature related to doors. According to several previous studies, it appears likely that the door opening process (DOP) influences pedestrian flow. However, the number of studies examining the DOP remains small. Therefore, to enhance understanding of pedestrian flow, we examined two door characteristics that could affect the DOP (opening direction (swing door: push or pull) and handle type (knob, lever, and panic bar)) and limited visibility. We conducted a walking experiment to take all variables (10 cases; 10 participants per case) into account. Statistical analysis was performed on the difference in movement times, and the results were as follows: (1) inclusion of the DOP affected pedestrian flow; (2) when visibility was limited, movement times with DOP inclusion increased significantly regardless of the door opening direction and handle type; (3) when the door opening direction was ‘push’, regardless of limited visibility and door handle type, movement times with DOP inclusion were significantly lower; and (4) the door handle type did not result in any significant difference in movement times with DOP inclusion. In addition, we calculated the delay time based on the experiment results, to include the DOP in pedestrian flow (push 1.96–2.88 s, pull 3.91–4.43 s; limited visibility: push 7.38–12.56 s, and pull 12.88–16.35 s). The results of this study could be used as basic data for the development of codes/regulations, engineering guidance, and egress models for doors.
AB - The door is a section prone to bottlenecks and is an important element in the study of pedestrian flow. Therefore, characteristics of doors (e.g., width, location, and the distance between doors) have been taken into consideration in the existing literature related to doors. According to several previous studies, it appears likely that the door opening process (DOP) influences pedestrian flow. However, the number of studies examining the DOP remains small. Therefore, to enhance understanding of pedestrian flow, we examined two door characteristics that could affect the DOP (opening direction (swing door: push or pull) and handle type (knob, lever, and panic bar)) and limited visibility. We conducted a walking experiment to take all variables (10 cases; 10 participants per case) into account. Statistical analysis was performed on the difference in movement times, and the results were as follows: (1) inclusion of the DOP affected pedestrian flow; (2) when visibility was limited, movement times with DOP inclusion increased significantly regardless of the door opening direction and handle type; (3) when the door opening direction was ‘push’, regardless of limited visibility and door handle type, movement times with DOP inclusion were significantly lower; and (4) the door handle type did not result in any significant difference in movement times with DOP inclusion. In addition, we calculated the delay time based on the experiment results, to include the DOP in pedestrian flow (push 1.96–2.88 s, pull 3.91–4.43 s; limited visibility: push 7.38–12.56 s, and pull 12.88–16.35 s). The results of this study could be used as basic data for the development of codes/regulations, engineering guidance, and egress models for doors.
KW - Door opening process
KW - Handle type
KW - Limited visibility
KW - Movement time
KW - Opening direction
UR - http://www.scopus.com/inward/record.url?scp=85093093619&partnerID=8YFLogxK
U2 - 10.3390/su12208453
DO - 10.3390/su12208453
M3 - Article
AN - SCOPUS:85093093619
SN - 2071-1050
VL - 12
SP - 1
EP - 16
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 20
M1 - 8453
ER -