TY - JOUR
T1 - Construction of ternary (1D/2D/3D) Fe2O3-supported micro pillared Cu-based MOF on chitosan with improved photocatalytic behavior on removal of paraquat
AU - Vigneshwaran, Sivakumar
AU - Sirajudheen, Palliyalil
AU - Sajna, Valiya Peedikakkal
AU - Park, Chang Min
AU - Meenakshi, Sankaran
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2023/2
Y1 - 2023/2
N2 - A hetero-structured metal organic framework of Cu-BTC and Fe2O3 nano-photocatalyst were tethered over chitosan using the hydrothermal method and fabricated a hybrid porous nanocomposite (CS-Fe@Cu-BTC). X-ray diffractometer results exposed the existence of Fe2O3 peaks. Surface area measurements using BET showed a mesoporous structure and the formation of type IV adsorption isotherm for nanocomposite. XPS and SEM-EDAX confirmed the existence of Fe2O3 nanoparticles in the hybrid porous structure. The UV–vis diffuse reflectance absorption shape emphasized the role of Fe2O3 in enhancing the band gap of CS-Fe@Cu-BTC nanohybrid. The lower intensity photoluminescence spectra of the CS-Fe@Cu-BTC shows a competent charge partition and delayed the recombination of electron-hole pairs. The photo-mineralization efficiency of Cu-BTC and CS-Fe@Cu-BTC was evaluated in terms of electronic interactions using paraquat (PQT) as the probe molecule, which shows a mineralization of 91% at the pH range of ~ 5. The contribution of •OH in the degradation of PQT over CS-Fe@Cu-BTC nanocomposites revealed using the trapping test and the degradation mechanism follows the Langmuir-Hinshelwood model and pseudo-first-order kinetics. The durability of the CS-Fe@Cu-BTC nanocomposite was also established after four cycling processes.
AB - A hetero-structured metal organic framework of Cu-BTC and Fe2O3 nano-photocatalyst were tethered over chitosan using the hydrothermal method and fabricated a hybrid porous nanocomposite (CS-Fe@Cu-BTC). X-ray diffractometer results exposed the existence of Fe2O3 peaks. Surface area measurements using BET showed a mesoporous structure and the formation of type IV adsorption isotherm for nanocomposite. XPS and SEM-EDAX confirmed the existence of Fe2O3 nanoparticles in the hybrid porous structure. The UV–vis diffuse reflectance absorption shape emphasized the role of Fe2O3 in enhancing the band gap of CS-Fe@Cu-BTC nanohybrid. The lower intensity photoluminescence spectra of the CS-Fe@Cu-BTC shows a competent charge partition and delayed the recombination of electron-hole pairs. The photo-mineralization efficiency of Cu-BTC and CS-Fe@Cu-BTC was evaluated in terms of electronic interactions using paraquat (PQT) as the probe molecule, which shows a mineralization of 91% at the pH range of ~ 5. The contribution of •OH in the degradation of PQT over CS-Fe@Cu-BTC nanocomposites revealed using the trapping test and the degradation mechanism follows the Langmuir-Hinshelwood model and pseudo-first-order kinetics. The durability of the CS-Fe@Cu-BTC nanocomposite was also established after four cycling processes.
KW - Chitosan matrix
KW - Cu-based MOF
KW - HO generation
UR - http://www.scopus.com/inward/record.url?scp=85123108729&partnerID=8YFLogxK
U2 - 10.1007/s11356-022-18615-2
DO - 10.1007/s11356-022-18615-2
M3 - Article
AN - SCOPUS:85123108729
SN - 0944-1344
VL - 30
SP - 24876
EP - 24889
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
IS - 10
ER -