Continuous Differential Image-based Fast Convolution for Convolutional Neural Networks

Sunghoon Hong, Daejin Park

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Convolutional neural networks with powerful visual image analysis of deep structures are gaining popularity in many research fields. The main difference in convolutional neural networks compared to other artificial neural networks is the addition of many convolutional layers. The convolutional layer improves the performance of artificial neural networks by extracting feature maps required for image classification. However, for applications that require very low-latency on limited processing resources, the success of a convolutional neural network depends on how fast we can compute. In this paper, we propose a novel convolution technique of fast algorithms for convolutional neural networks using continuous differential images. The proposed method improves the response speed of the algorithm by reducing the computational complexity of the convolutional layer. It is compatible with all types of convolutional neural networks, and the lower the difference in the continuous images, the better the performance. We use the darknet network to benchmark the CPU implementation of our algorithm and show state-of-the-art throughput at pixel difference thresholds from 0 to 25 pixels.

Original languageEnglish
Title of host publicationICTC 2022 - 13th International Conference on Information and Communication Technology Convergence
Subtitle of host publicationAccelerating Digital Transformation with ICT Innovation
PublisherIEEE Computer Society
Pages492-494
Number of pages3
ISBN (Electronic)9781665499392
DOIs
StatePublished - 2022
Event13th International Conference on Information and Communication Technology Convergence, ICTC 2022 - Jeju Island, Korea, Republic of
Duration: 19 Oct 202221 Oct 2022

Publication series

NameInternational Conference on ICT Convergence
Volume2022-October
ISSN (Print)2162-1233
ISSN (Electronic)2162-1241

Conference

Conference13th International Conference on Information and Communication Technology Convergence, ICTC 2022
Country/TerritoryKorea, Republic of
CityJeju Island
Period19/10/2221/10/22

Keywords

  • Convolution techniques
  • Convolutional neural networks
  • Deep learning
  • Fast convolution
  • Machine learning

Fingerprint

Dive into the research topics of 'Continuous Differential Image-based Fast Convolution for Convolutional Neural Networks'. Together they form a unique fingerprint.

Cite this