Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding

Suyoung Kim, Jiyeon Hwang, Ho Young Jung

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recently, deep end-to-end learning has been studied for intent classification in Spoken Language Understanding (SLU). However, end-to-end models require a large amount of speech data with intent labels, and highly optimized models are generally sensitive to the inconsistency between the training and evaluation conditions. Therefore, a natural language understanding approach based on Automatic Speech Recognition (ASR) remains attractive because it can utilize a pre-trained general language model and adapt to the mismatch of the speech input environment. Using this module-based approach, we improve a noisy-channel model to handle transcription inconsistencies caused by ASR errors. We propose a two-stage method, Contrastive and Consistency Learning (CCL), that correlates error patterns between clean and noisy ASR transcripts and emphasizes the consistency of the latent features of the two transcripts. Experiments on four benchmark datasets show that CCL outperforms existing methods and improves the ASR robustness in various noisy environments.

Original languageEnglish
Title of host publicationLong Papers
EditorsKevin Duh, Helena Gomez, Steven Bethard
PublisherAssociation for Computational Linguistics (ACL)
Pages5698-5711
Number of pages14
ISBN (Electronic)9798891761148
DOIs
StatePublished - 2024
Event2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 - Hybrid, Mexico City, Mexico
Duration: 16 Jun 202421 Jun 2024

Publication series

NameProceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Volume1

Conference

Conference2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Country/TerritoryMexico
CityHybrid, Mexico City
Period16/06/2421/06/24

Fingerprint

Dive into the research topics of 'Contrastive and Consistency Learning for Neural Noisy-Channel Model in Spoken Language Understanding'. Together they form a unique fingerprint.

Cite this