Abstract
Heavy metal ion removal from wastewater constitutes an important issue in the water treatment industry. Although a variety of nanomaterials have been developed for heavy metal removal via adsorption, the adsorption capacity, removal efficiency, and material recyclability still remain a challenge. Here, we present novel Fe3O4@DAPF core-shell ferromagnetic nanorods (CSFMNRs) for the removal of Pb(II) from aqueous solutions; they were prepared by the facile surface modification of twin-like ferromagnetic Fe3O4 nanorods using a 2,3-diaminophenol and formaldehyde (DAPF)-based polymer. The crystallinity and structure of the Fe3O4 nanorods were confirmed via X-ray diffraction (XRD). Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) revealed the core-shell morphology and composition of the materials. Pb(II) removal using the prepared Fe3O4@DAPF CSFMNRs was assessed, and comparable adsorption capacities (83.3 mg g-1) to the largest value were demonstrated. A thermodynamic study of the adsorption clearly indicated that the adsorption was exothermic and spontaneous. Due to the ferromagnetic properties with a high saturation magnetization value (56.1 emu g-1) of the nanorods, the nanorods exhibited excellent reusability with one of the fastest recovery times (25 s) among reported materials. Therefore, the Fe3O4@DAPF CSFMNRs can serve as recyclable adsorbent materials and as an alternative to commonly used sorbent materials for the rapid removal of heavy metals from aqueous solutions.
Original language | English |
---|---|
Pages (from-to) | 25362-25372 |
Number of pages | 11 |
Journal | ACS applied materials & interfaces |
Volume | 7 |
Issue number | 45 |
DOIs | |
State | Published - 26 Oct 2015 |
Keywords
- amine-based polymer
- composite materials
- FeO
- ferromagnetic material
- lead removal
- nanorod