TY - JOUR
T1 - Correlation between photocatalytic efficacy and electronic band structure in hydrothermally grown TiO2 nanoparticles
AU - Yang, Mengjin
AU - Hume, Chad
AU - Lee, Sangwook
AU - Son, You Hwan
AU - Lee, Jung Kun
PY - 2010/9/16
Y1 - 2010/9/16
N2 - The effects of electronic band structure, electron-hole recombination, and photocatalytic property of N- and/or Fe-doped TiO2 were systematically explored. Hydrothermal reaction was used to incorporate N and/or Fe into TiO2 nanoparticles. Structural analysis using Raman spectra, X-ray diffraction, and transmission electron microscope (TEM) indicates that hydrothermally grown TiO2 particles have anatase phase, and their average size is ∼10 nm. In addition, hydrothermal doping of N and/or Fe was found to significantly modify the electronic band structure. The photocatalytic performance of undoped and doped nanomaterials was examined under UV or visible light. N doping increased the photocatalytic efficacy of TiO2 under visible light by more than 2 times. In contrast, Fe-doped and N/Fe-codoped TiO2 show worse photocatalytic performance than pure TiO2 under both UV and visible light, in spite of their smaller band gaps. Fluorescence of terephthalic acid indicates that a change in the photocatalytic performance of doped TiO2 is closely related to the amount of photoinduced radical ions. X-ray photoelectron spectroscopy and low-temperature photoluminescence were employed to study the doping mechanism. While both N and Fe facilitate the absorption of the visible light, it is found that only Fe increases the electron-hole recombination rate, leading to the opposite effects of N and Fe doping on the photocatalytic performance of TiO2.
AB - The effects of electronic band structure, electron-hole recombination, and photocatalytic property of N- and/or Fe-doped TiO2 were systematically explored. Hydrothermal reaction was used to incorporate N and/or Fe into TiO2 nanoparticles. Structural analysis using Raman spectra, X-ray diffraction, and transmission electron microscope (TEM) indicates that hydrothermally grown TiO2 particles have anatase phase, and their average size is ∼10 nm. In addition, hydrothermal doping of N and/or Fe was found to significantly modify the electronic band structure. The photocatalytic performance of undoped and doped nanomaterials was examined under UV or visible light. N doping increased the photocatalytic efficacy of TiO2 under visible light by more than 2 times. In contrast, Fe-doped and N/Fe-codoped TiO2 show worse photocatalytic performance than pure TiO2 under both UV and visible light, in spite of their smaller band gaps. Fluorescence of terephthalic acid indicates that a change in the photocatalytic performance of doped TiO2 is closely related to the amount of photoinduced radical ions. X-ray photoelectron spectroscopy and low-temperature photoluminescence were employed to study the doping mechanism. While both N and Fe facilitate the absorption of the visible light, it is found that only Fe increases the electron-hole recombination rate, leading to the opposite effects of N and Fe doping on the photocatalytic performance of TiO2.
UR - http://www.scopus.com/inward/record.url?scp=77956531713&partnerID=8YFLogxK
U2 - 10.1021/jp103764n
DO - 10.1021/jp103764n
M3 - Article
AN - SCOPUS:77956531713
SN - 1932-7447
VL - 114
SP - 15292
EP - 15297
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 36
ER -