Cryolite (Na3AlF6) crystallization for fluoride recovery using an electrolytic process equipped with a sacrificial aluminum anode

Vinh Ya, Yi Chieh Chen, Yi Hsuan Chou, Kwang Ho Choo, Jhy Chern Liu, Naresh Mameda, Chi Wang Li

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

An electro-crystallization process equipped with a sacrificial aluminum anode was operated under an optimum condition to promote the formation of crystalline cryolite for the recovery of fluoride from synthetic F-containing wastewater. The effects of pH, Al/F molar ratio, initial F concentration, and electrolytes were investigated experimentally, and the results were compared with data obtained from chemical equilibrium modeling. Cryolite was successfully produced under optimum pH values of 5 to 6 and Al/F molar ratios of less than 1/6. The F removal increased with increasing Al/F molar ratio until reaching the molar ratio of 1/6 and decreased thereafter due to the formation of AlFn3−n species. The adsorption of AlFn3−n by Al(OH)3 precipitates contributed part of F removal. The removal efficiency reached 100% when the initial fluoride concentration was high while it was around 90% with the low initial fluoride concentration. XRD and SEM/EDX analysis showed that the obtained solids matched well to the commercial cryolite. Finally, the operating costs of chemical-crystallization (the process with Al ions added chemically) and electro-crystallization were compared, and the cost of the former was less than the latter. Energy consumption was the main contributor to the operating cost of the electro-crystallization process.

Original languageEnglish
Pages (from-to)90-96
Number of pages7
JournalJournal of Hazardous Materials
Volume368
DOIs
StatePublished - 15 Apr 2019

Keywords

  • Chemical equilibrium modeling
  • Cryolite
  • Electro-crystallization
  • Fluoride
  • Recovery

Fingerprint

Dive into the research topics of 'Cryolite (Na3AlF6) crystallization for fluoride recovery using an electrolytic process equipped with a sacrificial aluminum anode'. Together they form a unique fingerprint.

Cite this