Crystal growth, luminescence, and scintillation properties of Zn2Te3O8 crystal for 0νββ decay search

Arshad Khan, H. J. Kim, Yeongduk Kim, Moo Hyun Lee, Ayman M. Abdalla, Jari S. Algethami

Research output: Contribution to journalArticlepeer-review

Abstract

A single crystal of Zn2Te3O8 (ZTO) was grown using the conventional Czochralski technique. TGA analysis showed that the melting point of ZTO is 681 °C, while it exhibits a structural phase transition at 621 °C. The powder X-ray diffraction analysis of ZTO confirmed that it possesses a single crystalline monoclinic structure with the C2/c space group. An indirect band gap of 3.75 eV was estimated for the ZTO crystal based on its absorption spectrum. The X-ray-induced luminescence of the grown crystal comprised a broad band peaking at 565 nm, which can be tentatively assigned to the self-trapped exciton emission from the (Te3O8)4− molecular complexes. The photoluminescence measured under 280 nm excitation showed a broad band luminescence peaking at about 600 nm, and its intensity was significantly enhanced upon cooling the crystal from 300 K to 10 K. The photoluminescence decay time under 280 nm excitation was shown to have two exponential components in the range from 10 K to 175 K, which became a single exponential upon further heating the crystal. Low scintillation light was observed at room temperature both under α- and β-particle excitations from 241Am and 90Sr sources, respectively. The scintillation light yield measured under β-particle excitation from the 90Sr source was enhanced by about five orders of magnitude at 10 K in comparison to that at 300 K. The scintillation light yield measured at 10 K under the same experimental conditions for ZTO in comparison with the well-known cryogenic scintillator Li2MoO4 (LMO) was shown to have four times higher scintillation light. A single-crystal ingot of ZTO was obtained for the first time; however, it had several cracks due to its phase transition. Notably, scintillation at low temperatures for a Te-based crystal was observed for the first time. These preliminary findings are very promising and show that ZTO will be a good candidate for cryogenic phonon scintillation detectors for the 0νββ decay search of 130Te.

Original languageEnglish
Pages (from-to)223-232
Number of pages10
JournalCrystEngComm
Volume26
Issue number2
DOIs
StatePublished - 6 Dec 2023

Fingerprint

Dive into the research topics of 'Crystal growth, luminescence, and scintillation properties of Zn2Te3O8 crystal for 0νββ decay search'. Together they form a unique fingerprint.

Cite this