Customer list segmentation using the combined response model

E. H. Suh, K. C. Noh, C. K. Suh

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Response models such as RFM (Recency, Frequency, Monetary), Logistic Regression, and Neural Networks estimate a single response model in direct marketing for segmenting and targeting customers. However, if there is considerable customer heterogeneity in the database, the models can be potentially misleading. To reflect this heterogeneity, researchers have introduced ways to combine two or more methods. Suggesting the capability of the combined model using the low correlation coefficient between them, the previous research on the combined response model did not provide answers for two important questions: (1) What are the response models that have a low correlation coefficient between them when combined? (2) Does the low correlation coefficient ensure improved performance? In this paper, we propose RFM as a method that has a low correlation coefficient when combined with Logistic Regression or Neural Networks. Our case study also concludes that the low correlation coefficient does not always ensure improved performance.

Original languageEnglish
Pages (from-to)89-97
Number of pages9
JournalExpert Systems with Applications
Volume17
Issue number2
DOIs
StatePublished - 1999

Keywords

  • Combined response model
  • Customer list segmentation
  • Neural networks

Fingerprint

Dive into the research topics of 'Customer list segmentation using the combined response model'. Together they form a unique fingerprint.

Cite this