TY - JOUR
T1 - CXC chemokine ligand 2 induced by receptor activator of NF-κB ligand enhances osteoclastogenesis
AU - Ha, Jeongim
AU - Choi, Hyo Sun
AU - Lee, Youngkyun
AU - Kwon, Hyung Joo
AU - Song, Yeong Wook
AU - Kim, Hong Hee
PY - 2010/5/1
Y1 - 2010/5/1
N2 - CXCL2 has been known to regulate immune functions mainly by chemo-attracting neutrophils. In this study, we show that CXCL2 can be induced by receptor activator of NF-κB ligand, the osteoclast (OC) differentiation factor, through JNK and NF-κB signaling pathways in OC precursor cells. CXCL2 in turn enhanced the proliferation of OC precursor cells of bone marrow-derived macrophages (BMMs) through the activation of ERK. Knockdown of CXCL2 inhibited both the proliferation of and the ERK activation in BMMs. During osteoclastogenesis CXCL2 stimulated the adhesion and the migration of BMMs. Moreover, the formation of OCs from BMMs was significantly increased on treatment with CXCL2. Conversely, the CXCL2 antagonist repertaxin and a CXCL2 neutralizing Ab potently reduced receptor activator of NF-κB ligand-induced osteoclastogenesis. Furthermore, CXCL2 evoked fulminant bone erosion in the in vivo mouse experiments. Finally, prominent upregulation of CXCL2 was detected in synovial fluids and sera from rheumatoid arthritis patients, suggesting a potential involvement of CXCL2-mediated osteoclastogenesis in rheumatoid arthritis-associated bone destruction. Thus, CXCL2 is a novel therapeutic target for inflammatory bone destructive diseases.
AB - CXCL2 has been known to regulate immune functions mainly by chemo-attracting neutrophils. In this study, we show that CXCL2 can be induced by receptor activator of NF-κB ligand, the osteoclast (OC) differentiation factor, through JNK and NF-κB signaling pathways in OC precursor cells. CXCL2 in turn enhanced the proliferation of OC precursor cells of bone marrow-derived macrophages (BMMs) through the activation of ERK. Knockdown of CXCL2 inhibited both the proliferation of and the ERK activation in BMMs. During osteoclastogenesis CXCL2 stimulated the adhesion and the migration of BMMs. Moreover, the formation of OCs from BMMs was significantly increased on treatment with CXCL2. Conversely, the CXCL2 antagonist repertaxin and a CXCL2 neutralizing Ab potently reduced receptor activator of NF-κB ligand-induced osteoclastogenesis. Furthermore, CXCL2 evoked fulminant bone erosion in the in vivo mouse experiments. Finally, prominent upregulation of CXCL2 was detected in synovial fluids and sera from rheumatoid arthritis patients, suggesting a potential involvement of CXCL2-mediated osteoclastogenesis in rheumatoid arthritis-associated bone destruction. Thus, CXCL2 is a novel therapeutic target for inflammatory bone destructive diseases.
UR - http://www.scopus.com/inward/record.url?scp=77954502217&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.0902444
DO - 10.4049/jimmunol.0902444
M3 - Article
C2 - 20357249
AN - SCOPUS:77954502217
SN - 0022-1767
VL - 184
SP - 4717
EP - 4724
JO - Journal of Immunology
JF - Journal of Immunology
IS - 9
ER -