TY - JOUR
T1 - Decrease of ceramides with long-chain fatty acids in psoriasis
T2 - Possible inhibitory effect of interferon gamma on chain elongation
AU - Kim, Bo Kyung
AU - Shon, Jong Cheol
AU - Seo, Hee Seok
AU - Liu, Kwang Hyeon
AU - Lee, Jong Won
AU - Ahn, Sung Ku
AU - Hong, Seung Phil
N1 - Publisher Copyright:
© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
PY - 2022/2
Y1 - 2022/2
N2 - Reportedly, decreases in fatty acid (FA) chain length of ceramide (CER) are associated with interferon-γ (IFN-γ), which shows increased expression in psoriasis. However, the underlying mechanism of this association remains unclear. Therefore, in this study, we aimed to clarify this association between FA chain length of CER, IFN-γ, and the major transcriptional factors involving psoriasis. CER profiling according to FA chain length and class was performed in murine epidermis (n = 10 BALB/c mice topically treated with imiquimod, n = 10 controls) and human stratum corneum (SC) (n = 12 psoriasis, n = 11 controls). The expression of lipid synthetic enzymes, including elongases (ELOVLs), in murine epidermis was also measured using RT-PCR. Furthermore, the association of IFN-γ with various enzymes and transcription factors involved in the generation of long-chain CERs was also investigated using in vitro keratinocyte. A significant decrease in the percentage of long-chain CERs was observed in psoriasis-like murine epidermis and human psoriatic SC. Additionally, the expression levels of ELOVL1, ELOVL4, and ceramide synthase3 (CerS3) were significantly decreased in psoriasis-like murine epidermis and IFN-γ-treated keratinocyte. There was also a significant decrease in the expression of transcriptional factors, including peroxisome proliferator-activated receptor (PPAR), in IFN-γ treated keratinocyte. Thus, it could be suggested that IFN-γ may regulate ELOVL and CerS levels by down-regulating the transcriptional factors. Additionally, given the possible involvement of PPARs or liver X receptor agonist in the CER elongation process, they may serve as potential therapeutic agents for lengthening the CER FAs in psoriasis.
AB - Reportedly, decreases in fatty acid (FA) chain length of ceramide (CER) are associated with interferon-γ (IFN-γ), which shows increased expression in psoriasis. However, the underlying mechanism of this association remains unclear. Therefore, in this study, we aimed to clarify this association between FA chain length of CER, IFN-γ, and the major transcriptional factors involving psoriasis. CER profiling according to FA chain length and class was performed in murine epidermis (n = 10 BALB/c mice topically treated with imiquimod, n = 10 controls) and human stratum corneum (SC) (n = 12 psoriasis, n = 11 controls). The expression of lipid synthetic enzymes, including elongases (ELOVLs), in murine epidermis was also measured using RT-PCR. Furthermore, the association of IFN-γ with various enzymes and transcription factors involved in the generation of long-chain CERs was also investigated using in vitro keratinocyte. A significant decrease in the percentage of long-chain CERs was observed in psoriasis-like murine epidermis and human psoriatic SC. Additionally, the expression levels of ELOVL1, ELOVL4, and ceramide synthase3 (CerS3) were significantly decreased in psoriasis-like murine epidermis and IFN-γ-treated keratinocyte. There was also a significant decrease in the expression of transcriptional factors, including peroxisome proliferator-activated receptor (PPAR), in IFN-γ treated keratinocyte. Thus, it could be suggested that IFN-γ may regulate ELOVL and CerS levels by down-regulating the transcriptional factors. Additionally, given the possible involvement of PPARs or liver X receptor agonist in the CER elongation process, they may serve as potential therapeutic agents for lengthening the CER FAs in psoriasis.
KW - ceramide
KW - elongase
KW - fatty acid chain length
KW - interferon gamma
KW - psoriasis
UR - http://www.scopus.com/inward/record.url?scp=85110704002&partnerID=8YFLogxK
U2 - 10.1111/exd.14431
DO - 10.1111/exd.14431
M3 - Article
C2 - 34270128
AN - SCOPUS:85110704002
SN - 0906-6705
VL - 31
SP - 122
EP - 132
JO - Experimental Dermatology
JF - Experimental Dermatology
IS - 2
ER -