Deep Learning Activation Layer-Based Wall Quality Recognition Using Conv2D ResNet Exponential Transfer Learning Model

Bubryur Kim, Yuvaraj Natarajan, Shyamala Devi Munisamy, Aruna Rajendran, K. R. Sri Preethaa, Dong Eun Lee, Gitanjali Wadhwa

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Crack detection is essential for observing structural health and guaranteeing structural safety. The manual crack and other damage detection process is time-consuming and subject to surveyors’ biased judgments. The proposed Conv2D ResNet Exponential model for wall quality detection was trained with 5000 wall images, including various imperfections such as cracks, holes, efflorescence, damp patches, and spalls. The model was trained with initial weights to form the trained layers of the base model and was integrated with Xception, VGG19, DenseNet, and ResNet convolutional neural network (CNN) models to retrieve the general high-level features. A transfer deep-learning-based approach was implemented to create a custom layer of CNN models. The base model was combined with custom layers to estimate wall quality. Xception, VGG19, DenseNet, and ResNet models were fitted with different activation layers such as softplus, softsign, tanh, selu, elu, and exponential, along with transfer learning. The performance of Conv2D was evaluated using model loss, precision, accuracy, recall, and F-score measures. The model was validated by comparing the performances of Xception, VGG19, DenseNet, ResNet, and Conv2D ResNet Exponential. The experimental results show that the Conv2D ResNet model with an exponential activation layer outperforms it with an F-score value of 0.9978 and can potentially be a viable substitute for classifying various wall defects.

Original languageEnglish
Article number4602
JournalMathematics
Volume10
Issue number23
DOIs
StatePublished - Dec 2022

Keywords

  • Conv2D
  • F-score
  • activation layer
  • deep learning
  • transfer learning

Fingerprint

Dive into the research topics of 'Deep Learning Activation Layer-Based Wall Quality Recognition Using Conv2D ResNet Exponential Transfer Learning Model'. Together they form a unique fingerprint.

Cite this