Abstract
Background: It is difficult to characterize extracranial venous malformations (VMs) of the head and neck region from magnetic resonance imaging (MRI) manually and one at a time. We attempted to perform the automatic segmentation of lesions from MRI of extracranial VMs using a convolutional neural network as a deep learning tool. Methods: T2-weighted MRI from 53 patients with extracranial VMs in the head and neck region was used for annotations. Preprocessing management was performed before training. Three-dimensional U-Net was used as a segmentation model. Dice similarity coefficients were evaluated along with other indicators. Results: Dice similarity coefficients in 3D U-Net were found to be 99.75% in the training set and 60.62% in the test set. The models showed overfitting, which can be resolved with a larger number of objects, i.e., MRI VM images. Conclusions: Our pilot study showed sufficient potential for the automatic segmentation of extracranial VMs through deep learning using MR images from VM patients. The overfitting phenomenon observed will be resolved with a larger number of MRI VM images.
Original language | English |
---|---|
Article number | 5593 |
Journal | Journal of Clinical Medicine |
Volume | 11 |
Issue number | 19 |
DOIs | |
State | Published - Oct 2022 |
Keywords
- deep learning
- plastic
- surgery
- vascular malformations