Degradation of phenanthrene by Burkholderia sp. C3: Initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol

Jong Su Seo, Young Soo Keum, Yuting Hu, Sung Eun Lee, Qing X. Li

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6- and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.

Original languageEnglish
Pages (from-to)123-131
Number of pages9
JournalBiodegradation
Volume18
Issue number1
DOIs
StatePublished - Feb 2007

Keywords

  • 2-carboxycinnamic acid
  • Biodegradation
  • Burkholderia
  • Meta-cleavage
  • Ortho-cleavage
  • Phenanthrene

Fingerprint

Dive into the research topics of 'Degradation of phenanthrene by Burkholderia sp. C3: Initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol'. Together they form a unique fingerprint.

Cite this