TY - JOUR
T1 - Degradation of phenol by ball-milled activated carbon (ACBM) activated dual oxidant (persulfate/calcium peroxide) system
T2 - Effect of preadsorption and sequential injection
AU - Masud, Md Abdullah Al
AU - Shin, Won Sik
AU - Kim, Do Gun
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2023/1
Y1 - 2023/1
N2 - This study explored pre-adsorption and sequential injection of dual oxidant (DuOx) of persulfate (PS) and calcium peroxide (CP) for phenol degradation in an aqueous solution. Ball-milled activated carbon (ACBM) was used as the catalyst in the following systems: pre-adsorption and sequential injection of PS and CP (ACBM + PS + CP), pre-adsorption and simultaneous injection of PS and CP (ACBM + PS/CP), simultaneous injection of ACBM, PS, and CP (ACBM/PS/CP), simultaneous injection of ACBM and PS (ACBM/PS), and simultaneous injection of ACBM and CP (ACBM/CP). The ACBM had a larger specific surface area, more graphitic structures, and more defects. Moreover, it showed better phenol removal when introduced simultaneously with PS and CP. The phenol removal was most the efficient in ACBM + PS + CP (98.8%) with a near-neutral final pH, followed by ACBM + PS/CP, ACBM/PS, ACBM/PS/CP, and ACBM/CP. This indicates that pre-adsorption and separate injection of PS and CP were the key strategy for improved performance and maintained favorable pH for the activation of PS and CP. The dual oxidant system (PS/CP) is superior to single oxidant systems (PS or CP). Scavenger experiments and the electron spin resonance spectra (ESR) demonstrated that non-radical species (1O2) were dominantly involved in ACBM + PS + CP, but radical species (HO•, SO4•−) also contributed. HCO3− and HPO42− inhibited phenol degradation in ACBM + PS + CP, whereas Cl− and HA had negligible effects. The ACBM + PS + CP showed high total organic carbon removal and ACBM was recyclable with a slight decrease in activity. This work is important as it provides a detailed insight into the strategy of pre-adsorption and sequential injection of dual oxidants for a practical and cost-effective method of groundwater remediation.
AB - This study explored pre-adsorption and sequential injection of dual oxidant (DuOx) of persulfate (PS) and calcium peroxide (CP) for phenol degradation in an aqueous solution. Ball-milled activated carbon (ACBM) was used as the catalyst in the following systems: pre-adsorption and sequential injection of PS and CP (ACBM + PS + CP), pre-adsorption and simultaneous injection of PS and CP (ACBM + PS/CP), simultaneous injection of ACBM, PS, and CP (ACBM/PS/CP), simultaneous injection of ACBM and PS (ACBM/PS), and simultaneous injection of ACBM and CP (ACBM/CP). The ACBM had a larger specific surface area, more graphitic structures, and more defects. Moreover, it showed better phenol removal when introduced simultaneously with PS and CP. The phenol removal was most the efficient in ACBM + PS + CP (98.8%) with a near-neutral final pH, followed by ACBM + PS/CP, ACBM/PS, ACBM/PS/CP, and ACBM/CP. This indicates that pre-adsorption and separate injection of PS and CP were the key strategy for improved performance and maintained favorable pH for the activation of PS and CP. The dual oxidant system (PS/CP) is superior to single oxidant systems (PS or CP). Scavenger experiments and the electron spin resonance spectra (ESR) demonstrated that non-radical species (1O2) were dominantly involved in ACBM + PS + CP, but radical species (HO•, SO4•−) also contributed. HCO3− and HPO42− inhibited phenol degradation in ACBM + PS + CP, whereas Cl− and HA had negligible effects. The ACBM + PS + CP showed high total organic carbon removal and ACBM was recyclable with a slight decrease in activity. This work is important as it provides a detailed insight into the strategy of pre-adsorption and sequential injection of dual oxidants for a practical and cost-effective method of groundwater remediation.
KW - Ball-milled activated carbon
KW - Calcium peroxide
KW - Dual oxidant
KW - Persulfate
KW - Pre-adsorption
KW - Sequential injection
UR - http://www.scopus.com/inward/record.url?scp=85141979520&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2022.137120
DO - 10.1016/j.chemosphere.2022.137120
M3 - Article
C2 - 36334750
AN - SCOPUS:85141979520
SN - 0045-6535
VL - 312
JO - Chemosphere
JF - Chemosphere
M1 - 137120
ER -