Abstract
In dielectric cavities with a rotational symmetry, whispering gallery modes (WGMs) with an extremely long lifetime (that is, a very high Q factor) can be formed by total internal reflection of light around the rim of the cavities. The ultrahigh Q factor of WGMs has enabled a variety of impressive photonic systems, such as ultralow threshold microlasers, bio-sensors with unprecedented sensitivity and cavity optomechanical devices. However, the isotropic emission of WGMs, which is due to the rotational symmetry, is a serious drawback in applications that require directional light sources. Considerable efforts have thus been devoted to achieving directional emission by intentionally breaking the rotational symmetry. However, all of the methods proposed so far have suffered from substantial Q-spoiling. Here, we show how the mode properties of dielectric whispering gallery cavities, such as the Q factor and emission directionality, can be tailored at will using transformation optics. The proposed scheme will open a new horizon of applications beyond the conventional WGMs.
Original language | English |
---|---|
Pages (from-to) | 647-652 |
Number of pages | 6 |
Journal | Nature Photonics |
Volume | 10 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2016 |