TY - JOUR
T1 - Detection of 13 ginsenosides (RB1, Rb2, RC, Rd, RE, RF, RG1, RG3, Rh2, F1, compound K, 20(S)-protopanaxadiol, and 20(S)-protopanaxatriol) in human plasma and application of the analytical method to human pharmacokinetic studies following two week-repeated administration of red ginseng extract
AU - Jin, Sojeong
AU - Jeon, Ji Hyeon
AU - Lee, Sowon
AU - Kang, Woo Youl
AU - Seong, Sook Jin
AU - Yoon, Young Ran
AU - Choi, Min Koo
AU - Song, Im Sook
N1 - Publisher Copyright:
© 2019 by the authors.
PY - 2019/7/18
Y1 - 2019/7/18
N2 - We aimed to develop a sensitive method for detecting 13 ginsenosides using liquid chromatography–tandem mass spectrometry and to apply this method to pharmacokinetic studies in human following repeated oral administration of red ginseng extract. The chromatograms of Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) in human plasma were well separated. The calibration curve range for 13 ginsenosides was 0.5–200 ng/mL and the lower limit of quantitation was 0.5 ng/mL for all ginsenosides. The inter- and intra-day accuracy, precision, and stability were less than 15%. Among the 13 ginsenosides tested, nine ginsenosides (Rb1, Rb2, Rc, Rd, Rg3, CK, Rh2, PPD, and PPT) were detected in the human plasma samples. The plasma concentrations of Rb1, Rb2, Rc, Rd, and Rg3 were correlated with the content in red ginseng extract; however, CK, Rh2, PPD, and PPT were detected although they are not present in red ginseng extract, suggesting the formation of these ginsenosides through the human metabolism. In conclusion, our analytical method could be effectively used to evaluate pharmacokinetic properties of ginsenosides, which would be useful for establishing the pharmacokinetic–pharmacodymic relationship of ginsenosides as well as ginsenoside metabolism in humans.
AB - We aimed to develop a sensitive method for detecting 13 ginsenosides using liquid chromatography–tandem mass spectrometry and to apply this method to pharmacokinetic studies in human following repeated oral administration of red ginseng extract. The chromatograms of Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) in human plasma were well separated. The calibration curve range for 13 ginsenosides was 0.5–200 ng/mL and the lower limit of quantitation was 0.5 ng/mL for all ginsenosides. The inter- and intra-day accuracy, precision, and stability were less than 15%. Among the 13 ginsenosides tested, nine ginsenosides (Rb1, Rb2, Rc, Rd, Rg3, CK, Rh2, PPD, and PPT) were detected in the human plasma samples. The plasma concentrations of Rb1, Rb2, Rc, Rd, and Rg3 were correlated with the content in red ginseng extract; however, CK, Rh2, PPD, and PPT were detected although they are not present in red ginseng extract, suggesting the formation of these ginsenosides through the human metabolism. In conclusion, our analytical method could be effectively used to evaluate pharmacokinetic properties of ginsenosides, which would be useful for establishing the pharmacokinetic–pharmacodymic relationship of ginsenosides as well as ginsenoside metabolism in humans.
KW - Ginsenosides
KW - Human
KW - Pharmacokinetics
KW - Red ginseng extract
UR - http://www.scopus.com/inward/record.url?scp=85069641335&partnerID=8YFLogxK
U2 - 10.3390/molecules24142618
DO - 10.3390/molecules24142618
M3 - Article
C2 - 31323835
AN - SCOPUS:85069641335
SN - 1420-3049
VL - 24
JO - Molecules
JF - Molecules
IS - 14
M1 - 2618
ER -