TY - JOUR
T1 - Detection of Low-Density Foreign Objects in Infant Snacks Using a Continuous-Wave Sub-Terahertz Imaging System for Industrial Applications
AU - Na, Byeong Hyeon
AU - Lee, Dae Ho
AU - Choe, Jaein
AU - Kim, Young Duk
AU - Park, Mi Kyung
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/11
Y1 - 2024/11
N2 - Low-density foreign objects (LDFOs) in foods pose significant safety risks to consumers. Existing detection methods, such as metal and X-ray detectors, have limitations in identifying low-density and nonmetallic contaminants. To address these challenges, our research group constructed and optimized a continuous-wave sub-terahertz (THz) imaging system for the real-time, on-site detection of LDFOs in infant snacks. The system was optimized by adjusting the attenuation value from 0 to 9 dB and image processing parameters [White (W), Black (B), and Gamma (G)] from 0 to 100. Its detectability was evaluated across eight LDFOs underneath snacks with scanning at 30 cm/s. The optimal settings for puffed snacks and freeze-dried chips were found to be 3 dB attenuation with W, B, and G values of 100, 50, and 80, respectively, while others required 0 dB attenuation with W, B, and G set to 100, 0, and 100, respectively. Additionally, the moisture content of infant snacks was measured using a modified AOAC-based drying method at 105 °C, ensuring the removal of all free moisture. Using these optimized settings, the system successfully detected a housefly and a cockroach underneath puffed snacks and freeze-dried chips. It also detected LDFOs as small as 3 mm in size in a single layer of snacks, including polyurethane, polyvinyl chloride, ethylene–propylene–diene–monomer, and silicone, while in two layers of infant snacks, they were detected up to 7.5 mm. The constructed system can rapidly and effectively detect LDFOs in foods, offering a promising approach to enhance safety in the food industry.
AB - Low-density foreign objects (LDFOs) in foods pose significant safety risks to consumers. Existing detection methods, such as metal and X-ray detectors, have limitations in identifying low-density and nonmetallic contaminants. To address these challenges, our research group constructed and optimized a continuous-wave sub-terahertz (THz) imaging system for the real-time, on-site detection of LDFOs in infant snacks. The system was optimized by adjusting the attenuation value from 0 to 9 dB and image processing parameters [White (W), Black (B), and Gamma (G)] from 0 to 100. Its detectability was evaluated across eight LDFOs underneath snacks with scanning at 30 cm/s. The optimal settings for puffed snacks and freeze-dried chips were found to be 3 dB attenuation with W, B, and G values of 100, 50, and 80, respectively, while others required 0 dB attenuation with W, B, and G set to 100, 0, and 100, respectively. Additionally, the moisture content of infant snacks was measured using a modified AOAC-based drying method at 105 °C, ensuring the removal of all free moisture. Using these optimized settings, the system successfully detected a housefly and a cockroach underneath puffed snacks and freeze-dried chips. It also detected LDFOs as small as 3 mm in size in a single layer of snacks, including polyurethane, polyvinyl chloride, ethylene–propylene–diene–monomer, and silicone, while in two layers of infant snacks, they were detected up to 7.5 mm. The constructed system can rapidly and effectively detect LDFOs in foods, offering a promising approach to enhance safety in the food industry.
KW - infant snacks
KW - low-density foreign objects
KW - on-site detection
KW - sub-terahertz imaging
UR - http://www.scopus.com/inward/record.url?scp=85210264557&partnerID=8YFLogxK
U2 - 10.3390/s24227374
DO - 10.3390/s24227374
M3 - Article
C2 - 39599150
AN - SCOPUS:85210264557
SN - 1424-8220
VL - 24
JO - Sensors
JF - Sensors
IS - 22
M1 - 7374
ER -