TY - JOUR
T1 - Determination of Volatility Parameters of Secondary Organic Aerosol Components via Thermal Analysis
AU - Ashraf, Fawad
AU - Babar, Zaeem Bin
AU - Park, Jun Hyun
AU - Dao, Pham Duy Quang
AU - Cho, Chan Sik
AU - Lim, Ho Jin
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5
Y1 - 2022/5
N2 - To date, there are limited data on the thermal properties of secondary organic aerosol (SOA) components. In this study, we employed an experimental method to evaluate the physical properties of some atmospherically relevant compounds. We estimated the thermodynamic properties of SOA components, in particularly some carboxylic acids. The molar heat capacity, melting point and enthalpy, and vaporization enthalpy of the samples were determined via differential scanning calorimetry and thermogravimetric analysis, and their vaporization enthalpy (∆Hvap) was estimated using Clausius–Clapeyron and Langmuir equations based on their thermogravimetric profiles. The thermodynamic properties of benzoic acid as a reference compound agree well with the reported values. The obtained specific heat capacities of benzoic acid, phthalic acid, pinic acid, ketopinic acid, cis-pinonic acid, terpenylic acid and diaterpenylic acid acetate (DTAA) are 118.1, 169.4, 189.9, 223.9, 246.1, 223.2, and 524.1 J mol−1 K−1, respectively. The ∆Hvap of benzoic acid, phthalic acid, ketopinic acid, DTAA, and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) are 93.2 ± 0.4, 131.6, 113.8, and 124.4 kJ mol−1, respectively. The melting and vaporization enthalpies of the SOA components range from 7.3 to 29.7 kJ mol−1.
AB - To date, there are limited data on the thermal properties of secondary organic aerosol (SOA) components. In this study, we employed an experimental method to evaluate the physical properties of some atmospherically relevant compounds. We estimated the thermodynamic properties of SOA components, in particularly some carboxylic acids. The molar heat capacity, melting point and enthalpy, and vaporization enthalpy of the samples were determined via differential scanning calorimetry and thermogravimetric analysis, and their vaporization enthalpy (∆Hvap) was estimated using Clausius–Clapeyron and Langmuir equations based on their thermogravimetric profiles. The thermodynamic properties of benzoic acid as a reference compound agree well with the reported values. The obtained specific heat capacities of benzoic acid, phthalic acid, pinic acid, ketopinic acid, cis-pinonic acid, terpenylic acid and diaterpenylic acid acetate (DTAA) are 118.1, 169.4, 189.9, 223.9, 246.1, 223.2, and 524.1 J mol−1 K−1, respectively. The ∆Hvap of benzoic acid, phthalic acid, ketopinic acid, DTAA, and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) are 93.2 ± 0.4, 131.6, 113.8, and 124.4 kJ mol−1, respectively. The melting and vaporization enthalpies of the SOA components range from 7.3 to 29.7 kJ mol−1.
KW - differential scanning calorimetry
KW - melting temperature and enthalpy
KW - secondary organic aerosols (SOA)
KW - specific heat capacity
KW - thermal gravimetric analysis
KW - vaporization enthalpy
KW - volatility
UR - https://www.scopus.com/pages/publications/85129983878
U2 - 10.3390/atmos13050709
DO - 10.3390/atmos13050709
M3 - Article
AN - SCOPUS:85129983878
SN - 2073-4433
VL - 13
JO - Atmosphere
JF - Atmosphere
IS - 5
M1 - 709
ER -