Determining extremes for future precipitation in South Korea based on RCP scenarios using non-parametric SPI

Hemen Mark Butu, Yongwon Seo, Jeung Soo Huh

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Historical, downscaled and projected data for six cities in South Korea were collected and analyzed using non-parametric Standardized Precipitation Index (SPI) across the Representative Concentration Pathways (RCPs) RCP4.5 and RCP8.5. SPI results were utilized in further analyses: intensity, decadal frequency, and temporal shifts. Non-parametric SPI was used as it produces more reliable results in terms of their statistical, spatial and temporal characteristics. RCP4.5 was taken to represent concentrations under the current emissions trajectory, while RCP8.5 represents the high-end scenario. Findings suggest that extreme precipitation events are more likely to increase in number than extreme drought across all timescales and RCPs. Variability was observed to increase when comparing SPI obtained from actual, measured and gridded precipitation. More extreme droughts are expected under RCP8.5 forcing as are the occurrence of multiyear droughts and extreme wet events relative to RCP4.5. A seasonal shift in extreme precipitation of up to 3 months earlier was observed. Generally, the period between 2080 and 2100 holds the highest probability to host extremely rare and persistent events.

Original languageEnglish
JournalSustainability (Switzerland)
Volume12
Issue number3
DOIs
StatePublished - 1 Feb 2020

Keywords

  • Extreme drought
  • Extreme precipitation
  • Hydrologic extreme
  • Standardized precipitation index

Fingerprint

Dive into the research topics of 'Determining extremes for future precipitation in South Korea based on RCP scenarios using non-parametric SPI'. Together they form a unique fingerprint.

Cite this