TY - JOUR
T1 - Developing ph-modulated spray dried amorphous solid dispersion of candesartan cilexetil with enhanced in vitro and in vivo performance
AU - Poudel, Surendra
AU - Kim, Dong Wuk
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021
Y1 - 2021
N2 - Candesartan cilexetil (CC), a prodrug and highly effective antihypertensive agent, is a poorly soluble (BCS Class II) drug with limited bioavailability. Here, we attempted to improve CC’s bioavailability by formulating several CC-loaded amorphous solid dispersions with a hydrophilic carrier (PVPK30) and pH modifier (sodium carbonate) using the spray drying technique. Solubility, in vitro dissolution, and moisture content tests were used for screening the optimized formulation. We identified an optimized formulation of CC/PVPK30/SC, which at the ratio of 1:0.5:1 (w/w/w) exhibited a 30,000-fold increase in solubility and a more than 9-fold enhancement in dissolution compared to pure CC. Solid-state characterization revealed that in pH-modulated CC amorphous solid dispersion (CCSDpM), CC’s crystallinity was altered to an amorphous state with the absence of undesirable interactions. Stability studies also showed that the optimized formulation was stable with good drug content and drug release under accelerated conditions of up to 4 weeks and real-time stability conditions of up to 12 weeks. Furthermore, pharmacokinetic parameters, such as AUC and Cmax of candesartan, had a 4.45-fold and 7.42-fold improvement, respectively, in CCSDpM-treated rats compared to those in the CC-treated rats. Thus, these results suggest that CCSDpM is highly effective for increasing oral absorption. The application of these techniques can be a viable strategy to improve a drug’s bioavailability.
AB - Candesartan cilexetil (CC), a prodrug and highly effective antihypertensive agent, is a poorly soluble (BCS Class II) drug with limited bioavailability. Here, we attempted to improve CC’s bioavailability by formulating several CC-loaded amorphous solid dispersions with a hydrophilic carrier (PVPK30) and pH modifier (sodium carbonate) using the spray drying technique. Solubility, in vitro dissolution, and moisture content tests were used for screening the optimized formulation. We identified an optimized formulation of CC/PVPK30/SC, which at the ratio of 1:0.5:1 (w/w/w) exhibited a 30,000-fold increase in solubility and a more than 9-fold enhancement in dissolution compared to pure CC. Solid-state characterization revealed that in pH-modulated CC amorphous solid dispersion (CCSDpM), CC’s crystallinity was altered to an amorphous state with the absence of undesirable interactions. Stability studies also showed that the optimized formulation was stable with good drug content and drug release under accelerated conditions of up to 4 weeks and real-time stability conditions of up to 12 weeks. Furthermore, pharmacokinetic parameters, such as AUC and Cmax of candesartan, had a 4.45-fold and 7.42-fold improvement, respectively, in CCSDpM-treated rats compared to those in the CC-treated rats. Thus, these results suggest that CCSDpM is highly effective for increasing oral absorption. The application of these techniques can be a viable strategy to improve a drug’s bioavailability.
KW - Amorphous solid dispersion
KW - Bioavailability
KW - Candesartan Cilexetil
KW - PH-modulation
KW - PVPK30
KW - Spray drying
UR - http://www.scopus.com/inward/record.url?scp=85104569652&partnerID=8YFLogxK
U2 - 10.3390/pharmaceutics13040497
DO - 10.3390/pharmaceutics13040497
M3 - Article
AN - SCOPUS:85104569652
SN - 1999-4923
VL - 13
JO - Pharmaceutics
JF - Pharmaceutics
IS - 4
M1 - 497
ER -