Development of an athyroid mouse model using 131I ablation after preparation with a low-iodine diet

Ji Min Oh, Ho Won Lee, Senthilkumar Kalimuthu, Prakash Gangadaran, Se Hwan Baek, Man Hoon Han, Chae Moon Hong, Shin Young Jeong, Sang Woo Lee, Jaetae Lee, Byeong Cheol Ahn

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We optimized the protocol for thyroid ablation in living mice using radioactive iodine (RAI) and a low-iodine diet (LID). To examine the effect of LID on thyroid ablation, mice were randomly divided into 4 groups: Vehicle, 131I 2.775 MBq, 131I 5.55 MBq, and LID + 131I 2.775 MBq. The LID group was fed a LID for up to 7 days and then mice in the 131I 2.775, 131I 5.55, and LID + 131I 2.775 MBq groups were intravenously administrated with 131I, respectively. Scintigraphy imaging with 99mTc pertechnetate was performed once in 2 weeks for 4 weeks. After establishment of athyroid mice, control or athyroid mice were injected with human anaplastic thyroid cancer cells co-expressing sodium iodine symporter and enhanced firefly luciferase (ARO/NF) to evaluate RAI uptake. Scintigraphy imaging with 99mTc pertechnetate was performed with ARO/NF tumor-bearing mice. Scintigraphy imaging showed decreased thyroid uptake in the LID + 131I 2.775 MBq group compared to other groups. Scintigraphy images showed that tumor uptake was statically higher in athyroid mice than in control mice. These data suggest that these optimized conditions for thyroid ablation could be helpful to establish an in vivo mouse model.

Original languageEnglish
Article number13284
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - 1 Dec 2017

Fingerprint

Dive into the research topics of 'Development of an athyroid mouse model using 131I ablation after preparation with a low-iodine diet'. Together they form a unique fingerprint.

Cite this