TY - JOUR
T1 - Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models
AU - Lim, Kyo Sun Sunny
AU - Hong, Song You
PY - 2010/5
Y1 - 2010/5
N2 - A new double-moment bulk cloud microphysics scheme, the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) Microphysics scheme, which is based on the WRF Single-Moment 6-class (WSM6) Microphysics scheme, has been developed. In addition to the prediction for the mixing ratios of six water species (water vapor, cloud droplets, cloud ice, snow, rain, and graupel) in the WSM6 scheme, the number concentrations for cloud and rainwater are also predicted in the WDM6 scheme, together with a prognostic variable of cloud condensation nuclei (CCN) number concentration. The new scheme was evaluated on an idealized 2D thunderstorm test bed. Compared to the simulations from the WSM6 scheme, there are greater differences in the droplet concentration between the convective core and stratiform region in WDM6. The reduction of light precipitation and the increase of moderate precipitation accompanying a marked radar bright band near the freezing level from the WDM6 simulation tend to alleviate existing systematic biases in the case of the WSM6 scheme. The strength of this new microphysics scheme is its ability to allow flexibility in variable raindrop size distribution by predicting the number concentrations of clouds and rain, coupled with the explicit CCN distribution, at a reasonable computational cost.
AB - A new double-moment bulk cloud microphysics scheme, the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) Microphysics scheme, which is based on the WRF Single-Moment 6-class (WSM6) Microphysics scheme, has been developed. In addition to the prediction for the mixing ratios of six water species (water vapor, cloud droplets, cloud ice, snow, rain, and graupel) in the WSM6 scheme, the number concentrations for cloud and rainwater are also predicted in the WDM6 scheme, together with a prognostic variable of cloud condensation nuclei (CCN) number concentration. The new scheme was evaluated on an idealized 2D thunderstorm test bed. Compared to the simulations from the WSM6 scheme, there are greater differences in the droplet concentration between the convective core and stratiform region in WDM6. The reduction of light precipitation and the increase of moderate precipitation accompanying a marked radar bright band near the freezing level from the WDM6 simulation tend to alleviate existing systematic biases in the case of the WSM6 scheme. The strength of this new microphysics scheme is its ability to allow flexibility in variable raindrop size distribution by predicting the number concentrations of clouds and rain, coupled with the explicit CCN distribution, at a reasonable computational cost.
KW - Climate models
KW - Cloud microphysics
KW - Condensation
KW - Forecasting
KW - Rainfall
UR - http://www.scopus.com/inward/record.url?scp=77955579497&partnerID=8YFLogxK
U2 - 10.1175/2009MWR2968.1
DO - 10.1175/2009MWR2968.1
M3 - Article
AN - SCOPUS:77955579497
SN - 0027-0644
VL - 138
SP - 1587
EP - 1612
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 5
ER -