Abstract
In order to achieve high energy and power densities, a high-voltage asymmetric electrochemical supercapacitor has been developed, with activated carbon (AC) as the negative electrode and a silicon carbide-MnO2 nanoneedle (SiC-N-MnO2) composite as the positive electrode. A neutral aqueous Na2SO4 solution was used as the electrolyte. SiC-N-MnO2 was prepared by packing growing MnO 2 nanoneedle crystal species in only one direction on the silicon carbide surface. AC was oxidized by thermal treatment in order to introduce oxygen-containing functional groups. Owing to the high capacitance and excellent rate performance of SiC-N-MnO2 and AC, as well as the synergistic effects of the two electrodes, a constructed asymmetric supercapacitor exhibited superior electrochemical performance. The optimized asymmetric supercapacitor could be cycled reversibly in the voltage range from 0 to 1.9 V, and it exhibited a specific capacitance of 59.9 F g-1 at a scan rate of 2 mV s-1 and excellent energy density and power density (30.06 W h kg-1 and 113.92 W kg-1, respectively) with a specific capacitance loss of less than 3.1% after 1000 charge-discharge cycles, indicating excellent electrochemical stability. These encouraging results show great potential in terms of developing energy storage devices with high energy and power densities for practical applications.
Original language | English |
---|---|
Pages (from-to) | 11323-11336 |
Number of pages | 14 |
Journal | Physical Chemistry Chemical Physics |
Volume | 16 |
Issue number | 23 |
DOIs | |
State | Published - 21 Jun 2014 |