TY - JOUR
T1 - Differences in biofilm mass, expression of biofilm-associated genes, and resistance to desiccation between epidemic and sporadic clones of carbapenem-resistant acinetobacter baumannii sequence type 191
AU - Selasi, Gati Noble
AU - Nicholas, Asiimwe
AU - Jeon, Hyejin
AU - Na, Seok Hyeon
AU - Kwon, Hyo Il
AU - Kim, Yoo Jeong
AU - Heo, Sang Taek
AU - Oh, Man Hwan
AU - Lee, Je Chul
N1 - Publisher Copyright:
© 2016 Selasi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/9
Y1 - 2016/9
N2 - Understanding the biology behind the epidemicity and persistence of Acinetobacter baumannii in the hospital environment is critical to control outbreaks of infection. This study investigated the contributing factors to the epidemicity of carbapenem-resistant A. baumannii (CRAB) sequence type (ST) 191 by comparing the differences in biofilm formation, expression of biofilm-associated genes, and resistance to desiccation between major epidemic (n = 16), minor epidemic (n = 12), and sporadic (n = 12) clones. Biofilm mass was significantly greater in the major epidemic than the minor epidemic and sporadic clones. Major and minor epidemic clones expressed biofilm-associated genes, abaI, bap, pgaABCD, and csuA/BABCDE, higher than the sporadic clones in sessile conditions. The csuC, csuD, and csuE genes were more highly expressed in the major epidemic than minor epidemic clones. Interestingly, minor epidemic clones expressed more biofilm-associated genes than the major epidemic clone under planktonic conditions. Major epidemic clones were more resistant to desiccation than minor epidemic and sporadic clones on day 21. In conclusion, the epidemic CRAB ST191 clones exhibit a higher capacity to form biofilms, express the biofilm-associated genes under sessile conditions, and resist desiccation than sporadic clones. These phenotypic and genotypic characteristics of CRAB ST191 may account for the epidemicity of specific CRAB ST191 clones in the hospital.
AB - Understanding the biology behind the epidemicity and persistence of Acinetobacter baumannii in the hospital environment is critical to control outbreaks of infection. This study investigated the contributing factors to the epidemicity of carbapenem-resistant A. baumannii (CRAB) sequence type (ST) 191 by comparing the differences in biofilm formation, expression of biofilm-associated genes, and resistance to desiccation between major epidemic (n = 16), minor epidemic (n = 12), and sporadic (n = 12) clones. Biofilm mass was significantly greater in the major epidemic than the minor epidemic and sporadic clones. Major and minor epidemic clones expressed biofilm-associated genes, abaI, bap, pgaABCD, and csuA/BABCDE, higher than the sporadic clones in sessile conditions. The csuC, csuD, and csuE genes were more highly expressed in the major epidemic than minor epidemic clones. Interestingly, minor epidemic clones expressed more biofilm-associated genes than the major epidemic clone under planktonic conditions. Major epidemic clones were more resistant to desiccation than minor epidemic and sporadic clones on day 21. In conclusion, the epidemic CRAB ST191 clones exhibit a higher capacity to form biofilms, express the biofilm-associated genes under sessile conditions, and resist desiccation than sporadic clones. These phenotypic and genotypic characteristics of CRAB ST191 may account for the epidemicity of specific CRAB ST191 clones in the hospital.
UR - http://www.scopus.com/inward/record.url?scp=84990990490&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0162576
DO - 10.1371/journal.pone.0162576
M3 - Article
C2 - 27622249
AN - SCOPUS:84990990490
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 9
M1 - e0162576
ER -