Digital Laser Micropainting for Reprogrammable Optoelectronic Applications

Younggeun Lee, Jinhyeong Kwon, Jaemook Lim, Wooseop Shin, Sewoong Park, Eunseung Hwang, Jaeho Shin, Hyunmin Cho, Jinwook Jung, Hyun Jong Kim, Seungyong Han, Habeom Lee, Yong Son, Cheol Woo Ha, Prem Prabhakaran, Junyeob Yeo, Seung Hwan Ko, Sukjoon Hong

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Structural coloration is closely related to the progress of innovative optoelectronic applications, but the absence of direct, on-demand, and rewritable coloration schemes has impeded advances in the relevant area, particularly including the development of customized, reprogrammable optoelectronic devices. To overcome these limitations, a digital laser micropainting technique, based on controlled thin-film interference, is proposed through direct growth of the absorbing metal oxide layer on a metallic reflector in the solution environment via a laser. A continuous-wave laser simultaneously performs two functions—a photothermal reaction for site-selective metal oxide layer growth and in situ real-time monitoring of its thickness—while the reflection spectrum is tuned in a broad visible spectrum according to the laser fluence. The scalability and controllability of the proposed scheme is verified by laser-printed painting, while altering the thickness via supplementary irradiation of the identical laser in the homogeneous and heterogeneous solutions facilitates the modification of the original coloration. Finally, the proof-of-concept bolometer device verifies that specific wavelength-dependent photoresponsivity can be assigned, erased, and reassigned by the successive application of the proposed digital laser micropainting technique, which substantiates its potential to offer a new route for reprogrammable optoelectronic applications.

Original languageEnglish
Article number2006854
JournalAdvanced Functional Materials
Volume31
Issue number1
DOIs
StatePublished - 4 Jan 2021

Keywords

  • hydrothermal growth
  • laser
  • reprogrammable optoelectronics
  • structural coloration
  • thin-film interference

Fingerprint

Dive into the research topics of 'Digital Laser Micropainting for Reprogrammable Optoelectronic Applications'. Together they form a unique fingerprint.

Cite this