TY - JOUR
T1 - Disrupted cognitive network revealed by task-induced brain entropy in schizophrenia
AU - Kim, Seungho
AU - Lee, Sang Won
AU - Lee, Hansol
AU - Lee, Hui Joong
AU - Lee, Seung Jae
AU - Chang, Yongmin
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024/10
Y1 - 2024/10
N2 - Brain entropy (BEN), which measures the amount of information in brain activity, provides a novel perspective for evaluating brain function. Recent studies using resting-state functional magnetic resonance imaging (fMRI) have shown that BEN during rest can help characterize brain function alterations in schizophrenia (SCZ). However, there is a lack of research on BEN using task-evoked fMRI to explore task-dependent cognitive deficits in SCZ. In this study, we evaluate whether the reduced working memory (WM) capacity in SCZ is possibly associated with dynamic changes in task BEN during tasks with high cognitive demands. We analyzed data from 15 patients with SCZ and 15 healthy controls (HC), calculating task BEN from their N-back task fMRI scans. We then examined correlations between task BEN values, clinical symptoms, 2-back task performance, and neuropsychological test scores. Patients with SCZ exhibited significantly reduced task BEN in the cerebellum, hippocampus, parahippocampal gyrus, thalamus, and the middle and superior frontal gyrus (MFG and SFG) compared to HC. In HC, significant positive correlations were observed between task BEN and 2-back accuracy in several brain regions, including the MFG and SFG; such correlations were absent in patients with SCZ. Additionally, task BEN was negatively associated with scores for both positive and negative symptoms in areas including the parahippocampal gyrus among patients with SCZ. In conclusion, our findings indicate that a reduction in BEN within prefrontal and hippocampal regions during cognitively demanding tasks may serve as a neuroimaging marker for SCZ.
AB - Brain entropy (BEN), which measures the amount of information in brain activity, provides a novel perspective for evaluating brain function. Recent studies using resting-state functional magnetic resonance imaging (fMRI) have shown that BEN during rest can help characterize brain function alterations in schizophrenia (SCZ). However, there is a lack of research on BEN using task-evoked fMRI to explore task-dependent cognitive deficits in SCZ. In this study, we evaluate whether the reduced working memory (WM) capacity in SCZ is possibly associated with dynamic changes in task BEN during tasks with high cognitive demands. We analyzed data from 15 patients with SCZ and 15 healthy controls (HC), calculating task BEN from their N-back task fMRI scans. We then examined correlations between task BEN values, clinical symptoms, 2-back task performance, and neuropsychological test scores. Patients with SCZ exhibited significantly reduced task BEN in the cerebellum, hippocampus, parahippocampal gyrus, thalamus, and the middle and superior frontal gyrus (MFG and SFG) compared to HC. In HC, significant positive correlations were observed between task BEN and 2-back accuracy in several brain regions, including the MFG and SFG; such correlations were absent in patients with SCZ. Additionally, task BEN was negatively associated with scores for both positive and negative symptoms in areas including the parahippocampal gyrus among patients with SCZ. In conclusion, our findings indicate that a reduction in BEN within prefrontal and hippocampal regions during cognitively demanding tasks may serve as a neuroimaging marker for SCZ.
KW - Brain entropy
KW - Functional magnetic resonance imaging
KW - Schizophrenia
KW - Working memory
UR - http://www.scopus.com/inward/record.url?scp=85202927930&partnerID=8YFLogxK
U2 - 10.1007/s11682-024-00909-3
DO - 10.1007/s11682-024-00909-3
M3 - Article
C2 - 39222212
AN - SCOPUS:85202927930
SN - 1931-7557
VL - 18
SP - 1186
EP - 1196
JO - Brain Imaging and Behavior
JF - Brain Imaging and Behavior
IS - 5
ER -