TY - JOUR
T1 - Doubly Tuned Exchange-Correlation Functionals for Mixed-Reference Spin-Flip Time-Dependent Density Functional Theory
AU - Komarov, Konstantin
AU - Park, Woojin
AU - Lee, Seunghoon
AU - Huix-Rotllant, Miquel
AU - Choi, Cheol Ho
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/11/14
Y1 - 2023/11/14
N2 - It is demonstrated that significant accuracy improvements in MRSF-TDDFT can be achieved by introducing two different exchange-correlation (XC) functionals for the reference Kohn-Sham DFT and the response part of the calculations, respectively. Accordingly, two new XC functionals of doubly tuned Coulomb attenuated method-vertical excitation energy (DTCAM-VEE) and DTCAM-AEE were developed on the basis of the “adaptive exact exchange (AEE)” concept in the framework of the Coulomb-attenuating XC functionals. The values by DTCAM-VEE are in excellent agreement with those of Thiel’s set [mean absolute errors (MAEs) and the interquartile range (IQR) values of 0.218 and 0.327 eV, respectively]. On the other hand, DTCAM-AEE faithfully reproduced the qualitative aspects of conical intersections (CIs) of trans-butadiene and thymine and the nonadiabatic molecular dynamics (NAMD) simulations on thymine. The latter functional also remarkably exhibited the exact 1/R asymptotic behavior of the charge-transfer state of an ethylene-tetrafluoroethylene dimer and the accurate potential energy surfaces (PESs) along the two torsional angles of retinal protonated Schiff base model with six double bonds (rPSB6). Overall, DTCAM-AEE generally performs well, as its MAE (0.237) and IQR (0.41 eV) are much improved as compared to BH&HLYP. The current idea can also be applied to other XC functionals as well as other variants of linear response theories, opening a new way of developing XC functionals.
AB - It is demonstrated that significant accuracy improvements in MRSF-TDDFT can be achieved by introducing two different exchange-correlation (XC) functionals for the reference Kohn-Sham DFT and the response part of the calculations, respectively. Accordingly, two new XC functionals of doubly tuned Coulomb attenuated method-vertical excitation energy (DTCAM-VEE) and DTCAM-AEE were developed on the basis of the “adaptive exact exchange (AEE)” concept in the framework of the Coulomb-attenuating XC functionals. The values by DTCAM-VEE are in excellent agreement with those of Thiel’s set [mean absolute errors (MAEs) and the interquartile range (IQR) values of 0.218 and 0.327 eV, respectively]. On the other hand, DTCAM-AEE faithfully reproduced the qualitative aspects of conical intersections (CIs) of trans-butadiene and thymine and the nonadiabatic molecular dynamics (NAMD) simulations on thymine. The latter functional also remarkably exhibited the exact 1/R asymptotic behavior of the charge-transfer state of an ethylene-tetrafluoroethylene dimer and the accurate potential energy surfaces (PESs) along the two torsional angles of retinal protonated Schiff base model with six double bonds (rPSB6). Overall, DTCAM-AEE generally performs well, as its MAE (0.237) and IQR (0.41 eV) are much improved as compared to BH&HLYP. The current idea can also be applied to other XC functionals as well as other variants of linear response theories, opening a new way of developing XC functionals.
UR - http://www.scopus.com/inward/record.url?scp=85176967795&partnerID=8YFLogxK
U2 - 10.1021/acs.jctc.3c00884
DO - 10.1021/acs.jctc.3c00884
M3 - Article
C2 - 37844129
AN - SCOPUS:85176967795
SN - 1549-9618
VL - 19
SP - 7671
EP - 7684
JO - Journal of Chemical Theory and Computation
JF - Journal of Chemical Theory and Computation
IS - 21
ER -