TY - JOUR
T1 - Dual-cocatalyst-promoted photocatalytic treatment of persistent waterborne pollutants via in situ MXene-derived TiO2/Ti3C2 hybrids with plasmonic Ag nanoparticles
AU - Lee, Dong Eun
AU - Moru, Satyanarayana
AU - Jo, Wan Kuen
AU - Tonda, Surendar
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/1/1
Y1 - 2025/1/1
N2 - The integration of photocatalysts with MXenes and plasmonic metals has emerged as a promising strategy for enhancing wastewater treatment efficiency, leveraging the superior light-absorption and charge separation capabilities of these materials. In this study, we introduce an effective approach that significantly enhances the photocatalytic degradation of persistent organic pollutants by utilizing the synergistic benefits of dual cocatalysts: Ti3C2 (MXene) and Ag nanoparticles. We initially synthesized a series of TiO2/Ti3C2 hybrids by annealing Ti3C2 at various temperatures, aiming to optimize the size, distribution, and integration of TiO2 nanoparticles on a Ti3C2 substrate. These TiO2/Ti3C2 hybrids were then decorated with Ag nanoparticles to induce the surface plasmonic resonance effect, known to amplify photocatalytic efficiency. Notably, the optimized hybrid Ag/TiO2/Ti3C2 catalyst demonstrated significantly improved photocatalytic performance in degrading and mineralizing the persistent antibiotic sulfamethazine in water, outperforming TiO2/Ti3C2 hybrids, anatase TiO2, and other previously reported cutting-edge photocatalysts. This exceptional performance is primarily attributed to the synergistic effects of Ti3C2 and plasmonic Ag dual cocatalysts, which enhance optical absorption and specific surface area, as well as promote photoinduced charge transfer and separation. Additionally, the developed hybrids showed exceptional versatility in degrading various aqueous dye pollutants and maintained high efficacy across multiple cycles, underscoring their potential for recyclable and durable water-treatment applications. This work paves the way for the development of advanced MXene-based, plasmonically enhanced photocatalysts for the effective and sustainable treatment of waterborne pollutants.
AB - The integration of photocatalysts with MXenes and plasmonic metals has emerged as a promising strategy for enhancing wastewater treatment efficiency, leveraging the superior light-absorption and charge separation capabilities of these materials. In this study, we introduce an effective approach that significantly enhances the photocatalytic degradation of persistent organic pollutants by utilizing the synergistic benefits of dual cocatalysts: Ti3C2 (MXene) and Ag nanoparticles. We initially synthesized a series of TiO2/Ti3C2 hybrids by annealing Ti3C2 at various temperatures, aiming to optimize the size, distribution, and integration of TiO2 nanoparticles on a Ti3C2 substrate. These TiO2/Ti3C2 hybrids were then decorated with Ag nanoparticles to induce the surface plasmonic resonance effect, known to amplify photocatalytic efficiency. Notably, the optimized hybrid Ag/TiO2/Ti3C2 catalyst demonstrated significantly improved photocatalytic performance in degrading and mineralizing the persistent antibiotic sulfamethazine in water, outperforming TiO2/Ti3C2 hybrids, anatase TiO2, and other previously reported cutting-edge photocatalysts. This exceptional performance is primarily attributed to the synergistic effects of Ti3C2 and plasmonic Ag dual cocatalysts, which enhance optical absorption and specific surface area, as well as promote photoinduced charge transfer and separation. Additionally, the developed hybrids showed exceptional versatility in degrading various aqueous dye pollutants and maintained high efficacy across multiple cycles, underscoring their potential for recyclable and durable water-treatment applications. This work paves the way for the development of advanced MXene-based, plasmonically enhanced photocatalysts for the effective and sustainable treatment of waterborne pollutants.
KW - Environmental remediation
KW - MXenes
KW - Photodegradation
KW - Plasmonic effect
KW - TiO
UR - http://www.scopus.com/inward/record.url?scp=85194843098&partnerID=8YFLogxK
U2 - 10.1016/j.seppur.2024.128261
DO - 10.1016/j.seppur.2024.128261
M3 - Article
AN - SCOPUS:85194843098
SN - 1383-5866
VL - 352
JO - Separation and Purification Technology
JF - Separation and Purification Technology
M1 - 128261
ER -