TY - GEN
T1 - Dynamics of a water droplet on the heated surface of nano- And micro-structures
AU - Kim, Seol Ha
AU - Ahn, Ho Seon
AU - Kim, Joonwon
AU - Kim, Moo Hwan
PY - 2012
Y1 - 2012
N2 - In this study, we investigated the dynamic behavior of a water droplet near the Leidenfrost point (LFP) of bare and modified zirconium alloy surfaces with bundles of nanotubes (∼10-100 nm) or micro mountain-like structures using highspeed photography. A deionized water droplet (6 μL) was dropped onto the sample surfaces (20 × 25 × 0.7 mm) that were heated to temperatures ranging from 250°C to the LFP. The modified zirconium alloy surfaces showed complete wetting and well-spread features at room temperature due to strong liquid spreading by the structure. The meniscus of the liquid droplet on the structured surface experienced more vigorous dynamics with intensive nucleate boiling, compared with the clean, bare surface. The cutback phenomenon was observed on the bare surface; however, the structured surfaces showed a water droplet "burst". We observed that the LFPs were 449°C, 522°C, and 570°C, corresponding to the bare, micro-, and nano-structures, respectively.
AB - In this study, we investigated the dynamic behavior of a water droplet near the Leidenfrost point (LFP) of bare and modified zirconium alloy surfaces with bundles of nanotubes (∼10-100 nm) or micro mountain-like structures using highspeed photography. A deionized water droplet (6 μL) was dropped onto the sample surfaces (20 × 25 × 0.7 mm) that were heated to temperatures ranging from 250°C to the LFP. The modified zirconium alloy surfaces showed complete wetting and well-spread features at room temperature due to strong liquid spreading by the structure. The meniscus of the liquid droplet on the structured surface experienced more vigorous dynamics with intensive nucleate boiling, compared with the clean, bare surface. The cutback phenomenon was observed on the bare surface; however, the structured surfaces showed a water droplet "burst". We observed that the LFPs were 449°C, 522°C, and 570°C, corresponding to the bare, micro-, and nano-structures, respectively.
UR - http://www.scopus.com/inward/record.url?scp=84882296418&partnerID=8YFLogxK
U2 - 10.1115/ICNMM2012-73316
DO - 10.1115/ICNMM2012-73316
M3 - Conference contribution
AN - SCOPUS:84882296418
SN - 9780791844793
T3 - ASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012
SP - 751
EP - 760
BT - ASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels Collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012
T2 - ASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and Minichannels, ICNMM 2012 Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 Fluids Engineering Division Sum, ICNMM 2012
Y2 - 8 July 2012 through 12 July 2012
ER -