TY - GEN
T1 - Early detection of tire-road friction coefficient based on pneumatic trail stiffness
AU - Han, Kyoungseok
AU - Lee, Eunjae
AU - Choi, Seibum
N1 - Publisher Copyright:
© 2016 American Automatic Control Council (AACC).
PY - 2016/7/28
Y1 - 2016/7/28
N2 - This paper presents a method for estimating the maximum lateral tire-road friction coefficient and wheel side slip angle based on the pneumatic trail information that exhibits unique characteristics according to the road surface conditions. The high sensitivity of the pneumatic trail for the wheel side slip angle enables the proposed observer to detect the peak tire-road friction coefficient in low slip regions. The conventional method that is highly dependent on the tire model has drawbacks due to model uncertainty. In order to overcome these shortcomings, the proposed method minimizes the use of existing tire models. In addition, traction force is also considered in this paper using a correction factor. The estimation results are obtained recursively under the persistent excitation condition. A simulation is conducted first in order to verify the performance of the proposed method using a combination of the Carsim and Matlab & Simulink. Then, vehicle experiments are conducted on a proving ground in order to verify the feasibility of the proposed method. The verification results reveal that the early detection of the maximum tire-road friction coefficient is possible with less excitation signals than the conventional methods.
AB - This paper presents a method for estimating the maximum lateral tire-road friction coefficient and wheel side slip angle based on the pneumatic trail information that exhibits unique characteristics according to the road surface conditions. The high sensitivity of the pneumatic trail for the wheel side slip angle enables the proposed observer to detect the peak tire-road friction coefficient in low slip regions. The conventional method that is highly dependent on the tire model has drawbacks due to model uncertainty. In order to overcome these shortcomings, the proposed method minimizes the use of existing tire models. In addition, traction force is also considered in this paper using a correction factor. The estimation results are obtained recursively under the persistent excitation condition. A simulation is conducted first in order to verify the performance of the proposed method using a combination of the Carsim and Matlab & Simulink. Then, vehicle experiments are conducted on a proving ground in order to verify the feasibility of the proposed method. The verification results reveal that the early detection of the maximum tire-road friction coefficient is possible with less excitation signals than the conventional methods.
UR - http://www.scopus.com/inward/record.url?scp=84992036272&partnerID=8YFLogxK
U2 - 10.1109/ACC.2016.7526664
DO - 10.1109/ACC.2016.7526664
M3 - Conference contribution
AN - SCOPUS:84992036272
T3 - Proceedings of the American Control Conference
SP - 6326
EP - 6331
BT - 2016 American Control Conference, ACC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 American Control Conference, ACC 2016
Y2 - 6 July 2016 through 8 July 2016
ER -