TY - JOUR
T1 - Early to Middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean Peninsula
T2 - Tectonic implications
AU - Kim, Sung Won
AU - Kwon, Sanghoon
AU - Park, Seung Ik
AU - Yi, Keewook
AU - Santosh, M.
AU - Kim, Hyeong Soo
N1 - Publisher Copyright:
© 2016 International Association for Gondwana Research
PY - 2017/7/1
Y1 - 2017/7/1
N2 - The migmatized gneiss (viz. Gwangcheon gneiss) of the southern Hongseong area, central–western Korean Peninsula underwent intermediate to high granulite-facies metamorphism (ca. 9.2–12.0 kbar and 770–870 °C) during Early Silurian to Early Devonian in age. Field and petrographic evidences from the Gwangcheon migmatite provide a clear indication of partial melting. Particularly the migmatized paragneiss is juxtaposed with arc-related doleritic metagabbro, which might be related to the heat source of the migmatization. The migmatized paragneiss has similar arc-related geochemical characteristics, such as depletions in Ta–Nb, Sr, P, and Ti and enrichments in large ion lithophile elements (LILE) caused by the partial melting effect related to the doleritic metagabbro. Sensitive high-resolution ion microprobe (SHRIMP) zircon U–Pb dating of the migmatized paragneiss yielded ages of 432 ± 6 Ma, 431 ± 10 Ma, 421 ± 3 Ma, and 403 ± 3 Ma. The U–Pb ages of inherited zircons from the migmatized paragneiss yielded an age spectra from Neoarchean to Early Paleozoic, with a dominant age population at Neoproterozoic. In contrast, new-growth and recrystallized equant zircons showed dominant concordant Early Silurian to Early Devonian ages that provide critical evidence on the timing of migmatization. These age results and the tectonic signatures are similar to those reported from the Central China Orogenic Belt in China, indicating their tectonic linkage at the northeastern margin of eastern Gondwana during Early to Middle Paleozoic in age.
AB - The migmatized gneiss (viz. Gwangcheon gneiss) of the southern Hongseong area, central–western Korean Peninsula underwent intermediate to high granulite-facies metamorphism (ca. 9.2–12.0 kbar and 770–870 °C) during Early Silurian to Early Devonian in age. Field and petrographic evidences from the Gwangcheon migmatite provide a clear indication of partial melting. Particularly the migmatized paragneiss is juxtaposed with arc-related doleritic metagabbro, which might be related to the heat source of the migmatization. The migmatized paragneiss has similar arc-related geochemical characteristics, such as depletions in Ta–Nb, Sr, P, and Ti and enrichments in large ion lithophile elements (LILE) caused by the partial melting effect related to the doleritic metagabbro. Sensitive high-resolution ion microprobe (SHRIMP) zircon U–Pb dating of the migmatized paragneiss yielded ages of 432 ± 6 Ma, 431 ± 10 Ma, 421 ± 3 Ma, and 403 ± 3 Ma. The U–Pb ages of inherited zircons from the migmatized paragneiss yielded an age spectra from Neoarchean to Early Paleozoic, with a dominant age population at Neoproterozoic. In contrast, new-growth and recrystallized equant zircons showed dominant concordant Early Silurian to Early Devonian ages that provide critical evidence on the timing of migmatization. These age results and the tectonic signatures are similar to those reported from the Central China Orogenic Belt in China, indicating their tectonic linkage at the northeastern margin of eastern Gondwana during Early to Middle Paleozoic in age.
KW - Early Silurian to Early Devonian
KW - Hongseong–Imjingang Belt
KW - Korean Peninsula
KW - Migmatite
KW - Partial melting
KW - SHRIMP zircon U–Pb age
UR - http://www.scopus.com/inward/record.url?scp=84994222205&partnerID=8YFLogxK
U2 - 10.1016/j.gr.2016.05.016
DO - 10.1016/j.gr.2016.05.016
M3 - Article
AN - SCOPUS:84994222205
SN - 1342-937X
VL - 47
SP - 308
EP - 322
JO - Gondwana Research
JF - Gondwana Research
ER -