TY - JOUR
T1 - Earthwork Volume Calculation, 3D Model Generation, and Comparative Evaluation Using Vertical and High-Oblique Images Acquired by Unmanned Aerial Vehicles
AU - Lee, Kirim
AU - Lee, Won Hee
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10
Y1 - 2022/10
N2 - In civil engineering and building construction, the earthwork volume calculation is one of the most important factors in the design and construction stages; therefore, an accurate calculation is necessary. Moreover, because managing earthworks is highly important, in this study, a three-dimensional (3D) model for earthwork calculation and management was performed using an unmanned aerial vehicle (UAV) and an RGB camera. Vertical and high-oblique images (45°, 60°, and 75°) were acquired at 50 and 100 m heights for accurate earthwork calculations and a 3D model, and data were generated by dividing the images into eight cases. Cases 1–4 were images acquired from a height of 50 m, and cases 5–8 were images acquired from a height of 100 m. (case 1: 90°, case 2: 90° + 45°, case 3: 90° + 60°, case 4: 90° + 75°, case 5: 90°, case 6: 90° + 45°, case 7: 90° + 60°, case 8: 90° + 75°). Three evaluations were performed on the data. First, the accuracy was evaluated through checkpoints for the orthophoto; second, the earthwork volumes calculated via a global positioning system and UAV were compared; finally, the 3D model was evaluated. Case 2, which showed the lowest root mean square error in the orthophoto accuracy evaluation, was the most accurate. Case 2 was the most accurate in the earthwork volume evaluation and 3D model compared to other cases. Through this study, the best results were obtained when using a vertical image and a high-oblique image of 40 to 50° when generating a 3D model for earthwork volume calculation and management. In addition, if the UAV is not affected by obstacles, it is better to shoot at about 50 m or less than to shoot the UAV height too high.
AB - In civil engineering and building construction, the earthwork volume calculation is one of the most important factors in the design and construction stages; therefore, an accurate calculation is necessary. Moreover, because managing earthworks is highly important, in this study, a three-dimensional (3D) model for earthwork calculation and management was performed using an unmanned aerial vehicle (UAV) and an RGB camera. Vertical and high-oblique images (45°, 60°, and 75°) were acquired at 50 and 100 m heights for accurate earthwork calculations and a 3D model, and data were generated by dividing the images into eight cases. Cases 1–4 were images acquired from a height of 50 m, and cases 5–8 were images acquired from a height of 100 m. (case 1: 90°, case 2: 90° + 45°, case 3: 90° + 60°, case 4: 90° + 75°, case 5: 90°, case 6: 90° + 45°, case 7: 90° + 60°, case 8: 90° + 75°). Three evaluations were performed on the data. First, the accuracy was evaluated through checkpoints for the orthophoto; second, the earthwork volumes calculated via a global positioning system and UAV were compared; finally, the 3D model was evaluated. Case 2, which showed the lowest root mean square error in the orthophoto accuracy evaluation, was the most accurate. Case 2 was the most accurate in the earthwork volume evaluation and 3D model compared to other cases. Through this study, the best results were obtained when using a vertical image and a high-oblique image of 40 to 50° when generating a 3D model for earthwork volume calculation and management. In addition, if the UAV is not affected by obstacles, it is better to shoot at about 50 m or less than to shoot the UAV height too high.
KW - 3D model
KW - earthwork volume
KW - high-oblique image
KW - UAV
KW - vertical image
UR - http://www.scopus.com/inward/record.url?scp=85140370509&partnerID=8YFLogxK
U2 - 10.3390/aerospace9100606
DO - 10.3390/aerospace9100606
M3 - Article
AN - SCOPUS:85140370509
SN - 2226-4310
VL - 9
JO - Aerospace
JF - Aerospace
IS - 10
M1 - 606
ER -