Abstract
Depth profiling is an essential method to investigate the physical and chemical properties of a solid electrolyte and electrolyte/electrode interface. In conventional depth profiling, various spectroscopic tools such as X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) are utilized to monitor the chemical states along with ion bombardment to etch a sample. Nevertheless, the ion bombardment during depth profiling results in an inevitable systematic error, i.e., the accumulation of mobile ions at the electrolyte/electrode interface, known as the ion pile-up phenomenon. Here, we propose a novel method using bias potential, the substrate-bias method, to prevent the ion pile-up phenomena during depth profiling of a solid electrolyte. When the positive bias potential is applied on the substrate (electrode), the number of accumulating ions at the electrolyte/electrode interface is significantly reduced. The in-depth XPS analysis with the biased electrode reveals not only the suppression of the ion pile-up phenomena but also the altered chemical states at the interfacial region between the electrolyte and electrode depending on the bias. The proposed substrate-bias method can be a good alternative scheme for an efficient yet precise depth profiling technique for a solid electrolyte.
Original language | English |
---|---|
Pages (from-to) | 26922-26931 |
Number of pages | 10 |
Journal | ACS Applied Materials and Interfaces |
Volume | 16 |
Issue number | 20 |
DOIs | |
State | Published - 22 May 2024 |
Keywords
- bias potential
- depth profiling
- ion bombardment
- ion pile-up
- solid electrolyte