Abstract
The effect of growth temperature on the atomic layer deposition of zirconium oxide (ZrO2) dielectric thin films that were fabricated using a CpZr[N(CH3)2]3/C7H8 cocktail precursor with ozone was investigated. The chemical, structural, and electrical properties of ZrO2 films grown at temperatures from 250 to 350 °C were characterized. Stoichiometric ZrO2 films formed at 250-350 °C with an atomic ratio of O to Zr of 1.8-1.9 and a low content of carbon impurities. The film formed at 300 °C was predominantly the tetragonal crystalline phase, whereas that formed at 350 °C was a mixture of tetragonal and monoclinic phases. Electrical properties, such as capacitance, leakage current, and voltage linearity of TiN/ZrO2/TiN capacitors fabricated using the thin ZrO2 films grown at different temperatures were compared capacitor applications. The ZrO2 film grown at 300 °C exhibited low impurity content, predominantly tetragonal crystalline structure, a high dielectric permittivity of 38.3, a low leakage current of below 10-7 A/cm2 at 2 V, and low-voltage linearity.
Original language | English |
---|---|
Article number | 386 |
Journal | Materials |
Volume | 11 |
Issue number | 3 |
DOIs | |
State | Published - 5 Mar 2018 |
Keywords
- Atomic layer deposition
- Capacitor
- Cocktail precursor
- CpZr[N(CH)]/CH
- ZrO