TY - JOUR
T1 - Effect of hemicellulose molecular structure on wettability and surface adhesion to urea–formaldehyde resin adhesives
AU - Wibowo, Eko Setio
AU - Park, Byung Dae
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/7
Y1 - 2022/7
N2 - This study examined the effect of hemicellulose molecular structure on wettability and surface adhesion to urea–formaldehyde resin adhesives to better understand the complex adhesion process of wood biopolymers. Molecular structure of two hemicelluloses, such as arabinogalactan and xylan, was characterized using Fourier transform infrared, one-dimensional, and two-dimensional nuclear magnetic resonances. As a result, arabinogalactan had a hyperbranched structure, whereas xylan was more linear, which caused a distinctive morphology in their films, with the latter having a rougher surface. Further, the surface adhesion between hemicellulose and UF resins with various formaldehyde to urea molar ratios (1.0 and 1.6) was measured. The adhesion force and work of adhesion of arabinogalactan with different UF resins were found to be greater than those of xylan due to the former film’s higher surface free energy, more exposed OH groups, and smoother surface. In addition, 1.6 UF resins exhibited greater adhesion than 1.0 UF resins, regardless of the hemicellulose type, demonstrating that dispersion force was dominant in their molecular interactions.
AB - This study examined the effect of hemicellulose molecular structure on wettability and surface adhesion to urea–formaldehyde resin adhesives to better understand the complex adhesion process of wood biopolymers. Molecular structure of two hemicelluloses, such as arabinogalactan and xylan, was characterized using Fourier transform infrared, one-dimensional, and two-dimensional nuclear magnetic resonances. As a result, arabinogalactan had a hyperbranched structure, whereas xylan was more linear, which caused a distinctive morphology in their films, with the latter having a rougher surface. Further, the surface adhesion between hemicellulose and UF resins with various formaldehyde to urea molar ratios (1.0 and 1.6) was measured. The adhesion force and work of adhesion of arabinogalactan with different UF resins were found to be greater than those of xylan due to the former film’s higher surface free energy, more exposed OH groups, and smoother surface. In addition, 1.6 UF resins exhibited greater adhesion than 1.0 UF resins, regardless of the hemicellulose type, demonstrating that dispersion force was dominant in their molecular interactions.
UR - http://www.scopus.com/inward/record.url?scp=85132729314&partnerID=8YFLogxK
U2 - 10.1007/s00226-022-01397-8
DO - 10.1007/s00226-022-01397-8
M3 - Article
AN - SCOPUS:85132729314
SN - 0043-7719
VL - 56
SP - 1047
EP - 1070
JO - Wood Science and Technology
JF - Wood Science and Technology
IS - 4
ER -