TY - JOUR
T1 - Effect of pre-deformation on precipitation behavior of AZ80 alloy
T2 - Comparison of slip- and twinning-dominant deformation
AU - Kim, Hyun Ji
AU - Jin, Sang Cheol
AU - Jo, Sumi
AU - Park, Sung Hyuk
N1 - Publisher Copyright:
© 2024
PY - 2024/9
Y1 - 2024/9
N2 - This study investigates the effect of the deformation mode on the precipitation behavior of an extruded Mg–8.0Al–0.5Zn–0.2Mn (AZ80) alloy. The alloy samples are compared after the application of 3.5% tension and 3.5% compression along the extrusion direction to induce slip-dominant and twinning-dominant deformation modes, respectively. The pre-compressed (PC) sample, which contained numerous {10–12} tension twins, has a reduced grain size and a higher internal strain than the pre-tensioned (PT) sample, which is attributed to the inherent internal strain that occurs during the formation and growth of the twins. As a result, the precipitation behavior of the PC sample is accelerated, leading to its short peak aging time of 32 h, which is lower than those of the PT and as-extruded samples (48 and 100 h, respectively). Furthermore, fine continuous precipitates (CPs) rapidly form within the {10–12} twins, contributing to the enhanced hardness. Discontinuous precipitates (DPs), which have a hardness comparable to the CP-containing twinned regions, in the PC sample experience less coarsening during aging than those in the PT sample due to growth inhibition by the {10–12} twins. Ultimately, the {10–12} twins generated under the twinning-dominant deformation condition lead to enhanced precipitation behaviors, including the preferential formation and refinement of CPs and the suppressed coarsening of DPs. Consequently, pre-deformation that occurs {10–12} twinning exhibits more pronounced effects on precipitation acceleration and microstructural modification than slip-inducing pre-deformation.
AB - This study investigates the effect of the deformation mode on the precipitation behavior of an extruded Mg–8.0Al–0.5Zn–0.2Mn (AZ80) alloy. The alloy samples are compared after the application of 3.5% tension and 3.5% compression along the extrusion direction to induce slip-dominant and twinning-dominant deformation modes, respectively. The pre-compressed (PC) sample, which contained numerous {10–12} tension twins, has a reduced grain size and a higher internal strain than the pre-tensioned (PT) sample, which is attributed to the inherent internal strain that occurs during the formation and growth of the twins. As a result, the precipitation behavior of the PC sample is accelerated, leading to its short peak aging time of 32 h, which is lower than those of the PT and as-extruded samples (48 and 100 h, respectively). Furthermore, fine continuous precipitates (CPs) rapidly form within the {10–12} twins, contributing to the enhanced hardness. Discontinuous precipitates (DPs), which have a hardness comparable to the CP-containing twinned regions, in the PC sample experience less coarsening during aging than those in the PT sample due to growth inhibition by the {10–12} twins. Ultimately, the {10–12} twins generated under the twinning-dominant deformation condition lead to enhanced precipitation behaviors, including the preferential formation and refinement of CPs and the suppressed coarsening of DPs. Consequently, pre-deformation that occurs {10–12} twinning exhibits more pronounced effects on precipitation acceleration and microstructural modification than slip-inducing pre-deformation.
KW - AZ80 alloy
KW - Hardness
KW - Precipitation
KW - Slip
KW - Twinning
UR - http://www.scopus.com/inward/record.url?scp=85205140123&partnerID=8YFLogxK
U2 - 10.1016/j.jma.2024.09.001
DO - 10.1016/j.jma.2024.09.001
M3 - Article
AN - SCOPUS:85205140123
SN - 2213-9567
VL - 12
SP - 3616
EP - 3630
JO - Journal of Magnesium and Alloys
JF - Journal of Magnesium and Alloys
IS - 9
ER -