Effective modeling of conjugate heat transfer and hydraulics for the regenerative cooling design of kerosene rocket engines

Seong Ku Kim, Miok Joh, Hwan Seok Choi, Tae Seon Park

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The present work is motivated to develop a unified framework to simulate multi-physical processes which are crucial for trade-off design of liquid rocket thrust chambers among propulsive performance, regenerative cooling, and pressure budget. In this paper, an effective modeling of conjugate heat transfer and hydraulics through the regenerative cooling passage has been performed to quantitatively evaluate detailed cooling designs, including spirally twisted channels and bidirectionally branched circuit, as well as to provide the wall heat flux to a compressible reacting flow solver in an interactively coupled manner. The kerosene fuel used as coolant is modeled by a three-component physical surrogate, and the fluid properties required for calculation of a Nusselt number correlation and empirical resistance coefficients are computed over the entire thermodynamic states from compressed liquid to supercritical fluid using the NIST SUPERTRAPP. The present method has been applied to an actual regeneratively cooled thrust chamber and validated against measurement of hot-firing tests in terms of temperature increase and pressure drop of the coolant through the cooling passages. Based on the numerical results, supplementary effects of peripheral fuel cooling injection and thermal barrier coating are addressed.

Original languageEnglish
Pages (from-to)863-883
Number of pages21
JournalNumerical Heat Transfer; Part A: Applications
Volume66
Issue number8
DOIs
StatePublished - 15 Oct 2014

Fingerprint

Dive into the research topics of 'Effective modeling of conjugate heat transfer and hydraulics for the regenerative cooling design of kerosene rocket engines'. Together they form a unique fingerprint.

Cite this