Effective Phytosanitary Treatment for Export of Oriental Melons (Cucumis melo var L.) Using Ethyl Formate and Modified Atmosphere Packaging to Control Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)

Kyeongnam Kim, Dongbin Kim, Tae Hyung Kwon, Byung Ho Lee, Sung Eun Lee

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), commonly known as greenhouse whitefly, is one of the main insect pests of Oriental melon (Cucumis melo var L.) in South Korea. T. vaporariorum is of concern as a quarantine pest for the exportation of C. melo in Southeast Asian countries. Due to future restrictions on the use of methyl bromide (MB) during quarantine, ethyl formate (EF) represents a potential alternative. In this study, we evaluated EF for its efficacy (probit-9 values) in enabling the export of Oriental melons. The probit-9 value of EF for controlling T. vaporariorum was 3.02 g·h/m3 after 2 h of fumigation. We also assessed the phytotoxicity of EF on melons when using modified atmosphere packaging (MAP) under low-temperature conditions, which is required for export and trade, to extend shelf-life. In scaled-up trials, we found 8 g/m3 EF for 2 h at 5 °C to be suitable as a new phytosanitary treatment against greenhouse whitefly for exported Oriental melons when using MAP. No phytotoxic damage was found 28 d after fumigation at 5 °C in terms of five quality parameters (firmness, sugar content, mass loss, color change, and external damage).

Original languageEnglish
Article number442
JournalInsects
Volume14
Issue number5
DOIs
StatePublished - May 2023

Keywords

  • exported oriental melon
  • fumigation
  • modified atmosphere packaging
  • phytosanitary export
  • the greenhouse whitefly

Fingerprint

Dive into the research topics of 'Effective Phytosanitary Treatment for Export of Oriental Melons (Cucumis melo var L.) Using Ethyl Formate and Modified Atmosphere Packaging to Control Trialeurodes vaporariorum (Hemiptera: Aleyrodidae)'. Together they form a unique fingerprint.

Cite this